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Abstract

Dendrites form predominantly binary trees that are exquisitely embedded in the networks of

the brain. While neuronal computation is known to depend on the morphology of dendrites,

their underlying topological blueprint remains unknown. Here, we used a centripetal branch

ordering scheme originally developed to describe river networks—the Horton-Strahler order

(SO)–to examine hierarchical relationships of branching statistics in reconstructed and

model dendritic trees. We report on a number of universal topological relationships with SO

that are true for all binary trees and distinguish those from SO-sorted metric measures that

appear to be cell type-specific. The latter are therefore potential new candidates for catego-

rising dendritic tree structures. Interestingly, we find a faithful correlation of branch diame-

ters with centripetal branch orders, indicating a possible functional importance of SO for

dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs

are strongly correlated with SO. In summary, our study identifies important SO-dependent

measures in dendritic morphology that are relevant for neural function while at the same

time it describes other relationships that are universal for all dendrites.

Author summary

Similarly to river beds, dendritic trees of nerve cells form elaborate networks that branch

out to cover extensive areas. In the 1940s, ecologist Robert E. Horton developed an order-

ing system for branches in river networks that was refined in the 1950s by geoscientist

Arthur N. Strahler, the Horton-Strahler order (SO). Branches at the tips start with order 1

and increase their order in a systematic way when encountering new branches on the way

to the root. SO relationships have recently become popular for quantifying dendritic mor-

phologies. Various branching statistics can be studied as a function of SO. Here we

describe that topological measures such as the number of branches, the branch bifurcation

ratio and the size of subtrees exhibit stereotypical relations with SO in dendritic trees

independently of cell type, mirroring universal features of binary trees. Other functionally

more relevant features such as mean branch lengths, local diameters and simulated voltage

responses to synaptic inputs directly correlate with SO in a cell type-specific manner,
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indicating the importance of SO for understanding dendrite growth as well as neural

computation.

Introduction

Neurons of the central nervous system have a variety of shapes and possess dendritic trees that

exhibit complex branching patterns. Apart from providing neurons with adequate connectiv-

ity, dendritic trees are not just simple passive signal conductors but are thought to be involved

in sophisticated signal processing and neural computation [1,2]. Theoretical studies have sug-

gested that dendritic morphology alone is able to influence a neuron’s functional properties

such as its firing patterns [3,4]. In particular, the topology of dendrites has been associated

with strong effects on the temporal structure in the spiking behaviour [5,6]. Furthermore, the

size of a neuron’s dendritic tree, its diameter and its branching properties are all factors that

influence the decay of synaptic signals on their way to the soma [7,8]. Understanding the prin-

ciples governing dendrite morphology is therefore important for understanding neural com-

putation. In order to better characterise and quantify dendritic branching structure, a number

of branching statistics have been proposed [9,10]. Yet, these quantities exhibit strong correla-

tions that are mostly unexplored [11]. Even when taken together, a commonly used set of exist-

ing branching statistics is not sufficient to cluster morphologies according to their given cell

types [12].

In the following, we explore how sorting branching statistics by the precise order of the

occurrence of nodes in a tree can increase the interpretative power of these statistical measures.

Different methods have been developed to sort branches in dendrites. They mainly divide into

those that start ordering the branches from the root, i.e. at the soma (centrifugal), and those

that start from the terminal branches (centripetal) [13]. The centrifugal branch ordering

method assigns a lowest order of 0 (or 1 depending on the definition) to the root, and increases

the order by 1 at each branch point. Centrifugal branch ordering has found common use in

many tree-like structures and has been specifically applied to dendritic trees on many occa-

sions [14–20]. Among others, the maximum and mean branch order of dendritic trees have

been used to measure dendritic tree complexity [21].

Centripetal ordering schemes, on the other hand, have become increasingly common in

recent years and we focus here on the so-called Horton-Strahler or Strahler order (SO), which

was originally developed by Robert E. Horton as a stream ordering method for river networks

[22]. This scheme was later refined and slightly modified to be objectively quantifiable by

Arthur N. Strahler [23]. In Strahler’s version, which we use in this study, all terminal branches

are assigned order 1. The remaining orders are then constructed in an iterative way: When

two branches of order kmeet, the order of the parent branch is increased to order k + 1. When

two branches of different order meet, the higher order prevails (see Fig 1A). The highest order

of the tree always occurs at the root of the tree. The Strahler order of the root (or the maximal

Strahler order assigned to a segment in the tree) is referred to as the Strahler number (SN) of

the tree.

While SO started out in the field of geology as a stream classification scheme for river net-

works, it has since found use in many other scientific fields. For example, SO has been

employed to quantitatively describe other tree-like structures such as bronchial trees or pulmo-

nary arteries [24–27], as well as actual botanical trees [28–30]. Yet, it is important to note that

certain findings that have been reported using Strahler orders have little descriptive power if

the underlying structure is a binary tree. Most prominently this applies to the so-called

Centripetal branch ordering in dendrites
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“Horton’s law of stream numbers” [22], a power law between the counts of branches of a given

SO and the SO itself. The slope of this distribution corresponds to the tree’s overall bifurcation

ratio (i.e. the ratio of the number of branches between any two consecutive orders). This

power law asymptotically approaches 41−k for SO k [31] and the corresponding bifurcation

ratio converges to 4 [32,33]. The fact that its descriptive power is weak was only discovered

much later in the 1990s using Monte Carlo methods [34]. These findings caused some discus-

sions in the field and, interestingly, seem to be less known to the scientific community outside

of hydrology. We will therefore comment on them in the following and distinguish results that

are close to the expected case from ones carrying more descriptive power.

To our knowledge, Strahler’s method was first applied to the analysis of neuronal morphol-

ogies by Hollingworth and Berry, who used it to quantify and compare the branching struc-

tures of Purkinje and pyramidal cell dendrites in rats [35]. Later it was used to analyse the

growth patterns of axons in cat visual cortex [36]. In recent years, SO also became popular as a

measure of branching complexity in Drosophila dendritic arborisation (da) neurons of differ-

ent classes [37–42]. Despite its wide applicability and relative simplicity, SO has not been stud-

ied in detail especially in relation to larger samples of neuronal cell types. Hence, this study

uses Strahler’s centripetal branch ordering method to investigate and describe the morphology

of a variety of reconstructions of real dendrites as well as of synthetic model dendrites. We

observe that other SO-sorted distributions of topological measures apart from Horton’s law

are also nearly invariant to cell types and reflect universal features of binary trees. However,

the metric measures that we studied exhibit differences between distinct cell types and may

thus be used to quantify, categorise and better understand dendritic tree structure.

Results

Topological measures in a set of all possible binary trees of a given size

and in random binary trees

Topological measures of dendritic trees can be calculated without any metric information,

simply by analysing the succession of branch points (BPs) and termination points (TPs) in the

tree. In the following, we first describe topological relationships with Strahler order (SO) while

distinguishing between either segments (from BP—BP or BP—TP) or branches (consecutive

Fig 1. Depiction of the Strahler order (SO) scheme. A. Sketch to explain Strahler ordering (see main text).

Small labels in italics denote node SO and large bold labels denote segment SO. Colours also indicate node

and segment SO (black– 1, green– 2, red– 3). B. Sketch illustrating the difference between segments and

branches regarding SO-sorted statistics.

https://doi.org/10.1371/journal.pcbi.1005615.g001
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segments) of a given SO k (Fig 1B). In order to better interpret results from SO-sorted relation-

ships in dendritic trees, we first obtained results from the set of all possible binary trees with a

given number of nodes (Fig 2A–2E). After calculating all unsorted binary trees with 16 termi-

nal nodes, we also calculated the reduced set of all sorted binary trees in which the ordering of

subtrees at each node is discarded by allowing permutations at all BPs to identify topologically

equivalent trees (see Methods; the two trees in the green box in Fig 2A are topologically equiv-

alent since they can be transferred into one another by rotations of subtrees). For such small

trees (enumerating this set quickly becomes computationally expensive for larger trees as it

grows exponentially with tree size) that are typical for some real dendrites (e.g. dentate gyrus

granule cells), the distributions of SO-sorted segments (Fig 2B) and branches (Fig 2C) could

vary widely in different binary trees. At one extreme, the so-called “herringbone” tree that is

maximally asymmetric (Fig 2A, sample trees in the green box) showed a flat line with SO-

sorted segment number (Fig 2B, green bold line) with SO values restricted to 1 and 2. At the

other extreme, the complete binary tree (CBT), which is completely filled with nodes on every

level (Fig 2A, sample tree in the magenta box), doubled the number of nodes at every step that

decreased SO, leading to a 2−k trend (Fig 2B, magenta bold line). By contrast, the mean values

for these distributions (Fig 2D and 2E) followed much clearer trends. With increasing SN (the

maximal SO assigned to a segment in the tree), the average number of segments per SO for all

possible trees of degree 16 was well described by the same 2−k trend predicted by the complete

binary tree (Fig 2D, magenta dashed line). This is partly explained by the fact that we grouped

trees according to their SN: Maximally asymmetric herringbone trees are characterised by an

SN of 2. By contrast, symmetric CBTs exhibit maximal SN values for their respective number

of nodes with distributions of 2−k. Asymmetric trees naturally have lower SN values, therefore

groups of trees with larger SN will be more symmetric and behave more like the complete

binary tree.

The possible distributions for the number of branches per SO also varied widely (Fig 2C)

while the averages (Fig 2E) tended to a specific trend, in this case 41−k (Fig 2E, grey dashed

line). This is a consequence of Horton’s law and the 41−k power described in the introduction.

Generally, their topology has previously linked dendritic trees to certain classes of random

binary trees [43]. We therefore compared our results from the set of all possible binary trees of

degree 16 with a set of random trees produced by a critical Galton-Watson (GW) random

branching process [44] that generates a distribution of trees of different sizes (Fig 2F). Such a

GW process has been used in the past to generate a number of topologically distinct binary

trees and to model dendrite branching patterns [45]. We obtained a large number of GW

binary trees by randomly choosing to either terminate or branch further at every new terminal

node in an iterative manner. The branching process was terminated when no further branch-

ing occurred or when a total number of 800 nodes was reached. The number of segments dis-

tribution grouped by SN (Fig 2G) again followed the 2−k trend that would be expected for the

CBT and was very similar to that seen in Fig 2D (see above). As expected from Kirchner [34],

the number of branches per SO (Fig 2H) tightly approximated the same relationship as

observed for all possible binary trees of degree 16 (Fig 2E). Due to the larger magnitude of GW

random binary trees compared to the set of all possible binary trees of degree 16, the trends

were much more pronounced. The 41−k trend in SO-sorted branch numbers can further be

observed in the branch bifurcation ratios (Fig 2I), a related topological measure that compares

the number of branches of SO k with that of the next higher order k + 1. Since bifurcations do

not allow ratios lower than 2, this lower limit value is true for the CBT where SO increases at

every single branch point (Fig 2I, magenta line; see also Fig 2C where the line is an upper

bound). In this representation, most data points are evenly scattered around the average bifur-

cation ratio of 4 (coefficient of determination R2 = 0.9925), the asymptotic bifurcation ratio

Centripetal branch ordering in dendrites
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Fig 2. SO-sorted topological measures in binary trees. A. Sample binary trees taken from all possible 9,694,845 unsorted and 10,905 sorted

trees of degree 16. Coloured dots denote node SO (black– 1, green– 2, red– 3, blue– 4, cyan– 5). B. Depiction of all possible distributions of

segment numbers with SO in binary trees of degree 16; distributions for different trees are coloured differently. Bold green and bold magenta

lines show distributions for the so-called “herringbone” tree (green box in A) and for the complete binary tree (magenta box in A), respectively. C.

All possible distributions of branch numbers with SO in binary trees of degree 16. Bold green and bold magenta lines show distribution for the

“herringbone” tree and for the complete binary tree, respectively. Bold grey line shows distribution for a tree that follows the trend of 41−k for SO k

from dashed lines in E and H. D. Averages (lines with markers) and standard deviations (shaded areas) of normalised segment number

distributions with SO for all possible sorted and unsorted binary trees of degree 16 divided into trees of segment Strahler number (SN) 2, 3, and

4. Dashed line indicates the distribution obtained from a complete binary tree (see main text). E. Similar to D but with normalised branch number

distributions. Dashed line here indicates the asymptotic power relation obtained for large random binary trees (see main text). F. Sketch

illustrating the Galton-Watson (GW) type random branching process. Terminal nodes either stop growing or branch out with probabilities Pst =

Centripetal branch ordering in dendrites
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calculated previously for a large number of nodes [32–34] (see Discussion). Finally, we studied

the topological subtree sizes capturing the number of daughter BPs and TPs for all BPs of a

given SO in our GW random binary trees (Fig 2J). Since all nodes with SO 1 are TPs, the values

here start at SO 2. We found an exponential increase in subtree size with SO that was not well

described by the topological subtree sizes expected for a CBT (Fig 2J, magenta dashed line,

root node SN 6) but was rather well approximated by 4k−SN (Fig 2J, grey dashed line shown for

all segment SN values), a mirror image of the relation that we found for the number of

branches.

Topological measures and optimal wiring

Since dendrites serve the particular purpose of network connectivity, we investigated how

their resulting branching pattern distributions compare to those of random binary trees. We

have previously introduced a minimum spanning tree (MST) based growth algorithm that

connects a set of target points to generate synthetic dendrites. Meeting the requirements for

dendritic connectivity, such MST-based model trees guarantee short total dendritic lengths

and with one parameter, the balancing factor (bf), also increasingly prohibit long paths along

the tree towards the root to reduce conduction times in the neural circuit [46]. When the

resulting synthetic dendrites are restricted to binary trees by ruling out more than two daugh-

ter branches at a branch point, MST-based model trees represent a specialised, optimally-

wired distribution over the set of all possible binary trees: Since they are grown on the basis of

random target points distributed within a specific area, they rely on metric information to pro-

duce the resulting topology. For this reason, the binary trees resulting from the MST process

might be distributed in a highly selective manner. In order to test this, we examined two-

dimensional circular morphologies that varied the two parameters bf and the number of target

points (in order to obtain trees of SN 3–6, see Methods for details; Fig 3A). The results for

such MST-based model trees were similar to the set of all possible binary trees of degree 16

and the GW random binary trees (Fig 3B–3E), indicating that the specific sample of binary

trees that perform optimal wiring is not easily distinguishable from a set of random trees by

the SO-based metrics we used here. The branch bifurcation ratio (Fig 3D) in MST-based

model trees was also tightly scattered around a ratio of 4 (R2 = 0.9814, over all trees) in agree-

ment with the results from the random binary Galton-Watson model trees. Overall, bf 0 –the

pure minimum spanning tree—seemed to be a special case potentially because it represents

the least symmetric tree.

Topological measures in real dendrites

We then investigated the same topological measures in six real reconstructed dendrite types

(Fig 4A) and found that they, too, behaved very much like the binary tree models shown above

(Fig 4B–4E). Firstly, the normalised number of segments per SO approximated 2−k for SO k
(Fig 4B) with a slope between -0.89 and -1.20 for a fit by linear regression in binary logarithmic

space in the six groups of reconstructed dendrites (R2 > 0.9686 for slope fits in all groups). Sec-

ondly, the expected invariance of the SO-sorted number of branches matching a 41−k decay for

0.5 (red) and Pbr = 0.5 (blue), respectively. G, H. Similar to D and E but for GW random binary trees divided into groups of SN 2–6. I. Branch

bifurcation ratio between subsequent orders for the same GW random binary trees as in G and H. Magenta line indicates lower bound (see main

text) and grey line denotes asymptotic bifurcation ratio for large random binary trees (see main text). J. Average (lines with markers) and

standard deviations (shaded areas) of normalised topological subtree sizes for all topological nodes as a function of SO in GW random binary

trees divided into SN 3–6. Magenta dashed line indicates relation obtained for a complete binary tree (CBT) of node SN 6 (see main text). Grey

dashed lines represent mirror images (4k−SN, for SO k and SN 3–6) of the power relation in E (see main text). Note that in segment distributions

per SO such as in D and G, nearly half of the segments are terminal segments (i.e. SO 1) in all cases, a property of binary trees.

https://doi.org/10.1371/journal.pcbi.1005615.g002

Centripetal branch ordering in dendrites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005615 July 3, 2017 6 / 25

https://doi.org/10.1371/journal.pcbi.1005615.g002
https://doi.org/10.1371/journal.pcbi.1005615


SO k (Fig 4C) was pronounced and we found linear slopes ranging from -0.45 to -0.54 in the

log10 scale (R2 > 0.996 for slope fits in all groups). Thirdly, the bifurcation ratios for recon-

structions of real dendrites (Fig 4D) exhibited linear regression slopes varying between 2.23

for dentate gyrus granule cells and 3.77 for lobula plate tangential cells (LPTCs; Table 1), and

the fit for all lumped data was 3.44. However, the coefficient of determination for a fit of 4 was

R2 = 0.9387. Finally, the subtree sizes distributions (Fig 4E) followed the 4k−SN increase with

SO k observed previously, with linear slopes on the logarithmic average data ranging from 0.54

to 0.65 (R2 > 0.9898 for slope fits in all cases).

Taken together, these analyses show that the SO-sorted topological measures yielded very

similar distributions over a wide range of possible binary tree samples including all real den-

dritic trees, rendering these measures unsuitable for morphological classification, cf. [34].

Metric measures in real dendrites

Dendritic trees in the brain are embedded in 3D tissue, adding metric information such as X,

Y and Z coordinates as well as diameter values to the nodes in their tree structures that are not

captured by the topologies of abstract binary trees. While any local branching statistics could

exhibit interesting relationships with SO, we focused on the distributions of total dendritic

Fig 3. SO-sorted topological measures in minimum spanning trees (MSTs). A. Example synthetic MST

model dendrites (2D circular morphology) generated with 500 target points and differing balancing factors (bf).

Colours and legend to the right indicate bf in the remaining panels. B—E. Similar plots to Fig 2G–2J. For B, C,

and E, each line represents the mean of 614–970 (SN 3), 398–940 (SN 4), 625–967 (SN 5), and 248–964 (SN

6) model trees per bf. For better clarity, standard deviations are not shown.

https://doi.org/10.1371/journal.pcbi.1005615.g003

Centripetal branch ordering in dendrites
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length, mean segment lengths, mean branch lengths, and branch diameters, as well as basic

passive electrotonic properties. The amount of total dendritic length as a function of SO fol-

lowed an approximately exponential decay for all reconstructed dendrite types that we ana-

lysed, as seen by straight lines in the semi-logarithmic plots (Fig 5B). However, the slope of the

decay was clearly different for dendrites of various types: The decay was slower for planar, 2D

morphologies (e.g. LPTCs, Purkinje cells), for which 50–60% of the total dendritic length was

SO 1 (terminal segment or branch length). By contrast, the decay was faster in 3D

Fig 4. SO-sorted topological measures in real dendritic trees. A. Example reconstructed morphologies of

the six dendrite types that were analysed in this study. Colours indicate cell types in the remaining panels (red

—granule cell; orange—cerebellar Purkinje cell; green—spinal cord motoneuron; cyan—hippocampal

pyramidal cell, apical dendrite; blue—hippocampal pyramidal cell, basal dendrite; black—lobula plate

tangential cell, LPTC). Scale bars always 100 μm. B—E. Similar plots to Fig 2G–2J. Legend in B shows

number of dendritic trees used for the plot compared to the total number of trees analysed for that dendrite

type. For each cell type, only averages of trees with one given (i.e. the most abundant) SN were plotted,

except for panel D in which all investigated dendritic trees of a cell type were used. Shaded areas denote

standard deviations.

https://doi.org/10.1371/journal.pcbi.1005615.g004

Table 1. Linear regression fits for overall bifurcation ratios of reconstructed neuronal morphologies (see main text).

Granule cells Purkinje cells Motoneurons Pyramidal cells, apical Pyramidal cells, basal LPTCs

2.23 3.12 3.65 3.38 2.68 3.77

https://doi.org/10.1371/journal.pcbi.1005615.t001
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morphologies such as dentate gyrus granule cell dendrites and basal pyramidal dendrites with

the combined terminal branch length making up more than 80% of the total wiring length.

Linear regression fits on the semi-logarithmic data yielded slope values between -0.31 and

-0.76 (R2 > 0.9892 in all cases).

Normalised mean segment length distributions with SO also varied pronouncedly with cell

type (Fig 5C). Mean segment lengths in planar lobula plate tangential cell (LPTC) dendrites

and Purkinje cells were nearly constant over all SOs. By contrast, the distributions for 3D cells

featured longer mean segment lengths in the terminals, followed by a rapid decrease over the

remaining SOs in dentate granule cells (linear regression fit slope -0.45, R2 = 0.9996), basal

pyramidal dendrites (-0.43, R2 = 0.9894), apical pyramidal trees (-0.23, R2 = 0.9748), and moto-

neurons (-0.17, R2 = 0.9995). SO-sorted distributions of mean branch lengths varied even

more strongly between different dendrite types (Fig 5D). Some distributions increased expo-

nentially with SO up until a certain point; e.g. Purkinje cells and LPTCs (exponential increase

until their peak in the second-to-last order with linear regression slopes in logarithmic space

of 0.18 and 0.30, respectively; R2 = 0.9766 and R2 = 0.9978). Others decreased exponentially

Fig 5. SO-sorted metric measures in real dendritic trees. A. Legend; same as in Fig 4A. B. Average

normalised total dendritic length as it distributes per SO in the reconstructed cell types from Fig 4. C. Average

normalised segment lengths as they differ for different SO values. D. Average normalised branch lengths as

they differ for different SO values. Shaded areas denote standard deviations.

https://doi.org/10.1371/journal.pcbi.1005615.g005

Centripetal branch ordering in dendrites
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(granule cells -0.32, R2 = 0.9805, basal pyramidal dendrites -0.33, R2 = 0.9999), and yet others

still were nearly constant (motoneuron dendrites and apical pyramidal dendrites).

Metric measures in the MST model

In order to understand which features of the dendritic geometry led to the differences that we

observed in SO-sorted metric measures, we designed simple MST-based model trees that

reproduced the properties observed in Fig 5 (Fig 6). The MST results depended strongly on

the spatial distribution of the target points that were to be optimally connected. We matched

the results for SO-sorted measures seen in real dendrites by modulating basic parameters of

the MST model such as hull shape, root node location, balancing factor bf, number of target

points pts and the mode of target point distribution (Fig 6A, bottom row; Table 2). The slope

of exponential decay observed previously for SO-sorted total dendritic length (Fig 5B) was rep-

licated when using 2D vs 3D spanning hulls for the MST-generated trees (Fig 6B). However,

the details of the distributions were not entirely captured in the 2D models (LPTC and Pur-

kinje cell models), indicating that potentially more complex features of morphology determine

the traits observed in Fig 5B. Both the nearly constant mean segment length distribution seen

in LPTCs and Purkinje cells (Fig 6C) and the more complex relationships of branch length dis-

tributions there as well as in motoneurons and apical dendrites of pyramidal cells (Fig 6D)

could be replicated easily by geometric adjustments to the MST models. However, granule cell

and basal pyramidal dendrites with their similar distributions in Fig 5 required precise recon-

struction also of the inhomogeneous quadratic target point density along the height of the

cone in which the MST-based model trees were grown (Fig 6A, violet model). Even then, the

model did not capture the exponential decrease of segment and branch length seen in Fig 5C

and 5D very well. These findings suggest that complex cell type-specific differences in the

geometry of the growth process determine the different SO-sorted distributions of metric

branching statistics that we observed in Fig 5.

Functional compartmentalisation of SO-sorted tree segments

It is well known that terminal segments of dendritic trees exhibit the smallest diameters

[8,47,48] and that this contributes to the local input resistance being highest there [47,49]. At

the same time, even short branches in close proximity to the soma typically reach the smallest

diameters, suggesting a centripetal increase in diameter rather than a regular taper away from

the root. In the following, we investigate a potential relationship between SO and these features

that are expected to be important for neuronal computation. The relationship between diame-

ters and SO was striking and followed a similar trend in all cell types (Fig 7A). This increase of

diameters with SO would be consistent with quadratic fits (R2> 0.9956 for all morphologies),

which is in agreement with our predictions that quadratic tapers optimise current transfer in

dendritic trees [8,47]. Since we showed that SO correlated with subtree sizes (Fig 4E) it was not

surprising that diameters also weakly correlated with subtree sizes (Fig 7B).

As mentioned above, local diameter values are influential in the processing of synaptic

inputs and small diameters result in large local input resistances with strong voltage deflections

for a given synaptic input. Additionally, electrotonic properties depend in part on dendritic

topology [5,6,50]. We therefore also analysed simulated voltage responses to small steady-state

synaptic currents (10 pA) in passive entire dendrites (see Methods) and indeed found strong

relationships with SO (Fig 8A for Purkinje cells with different passive properties and Fig 8B for

the different cell types and their respective passive properties). Interestingly, all cell types apart

from Purkinje cells exhibited strong relationships with SO. This matches well with our previ-

ous finding that diameters in Purkinje cells were not optimised to transfer currents to the root
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[8] and could indicate a particular functional role of the Purkinje cell dendrite that is to date

not understood.

Discussion

In this study, we showed that the branching structures of real dendritic trees are indistinguish-

able from random binary trees when using four different Strahler order (SO) sorted topologi-

cal measures. The universal relationships that we uncovered were only partly known for

random binary trees and they are important for understanding general features of topological

Fig 6. Simulations of SO-sorted metric measures using synthetic trees. A. Top row shows the same

dendritic tree reconstructions as in Fig 4A. Bottom row shows the respective geometric arrangements for

which MST models reproduce the SO-sorted statistics observed in real cells (Fig 5). Number of target points

(pts), balancing factor (bf) including its possible ranges in parentheses, and indications of sizes (grey with

dashed lines) are given as numbers. Black dots show root node location. 2D or 3D spanning areas are

sketched in the respective colours and distributions of target points are sketched next to the spanning areas

(uniform for all but the rightmost model; see Table 2 for details). Granule cell and basal pyramidal dendrites

were represented by the same model (violet). Colours indicate the respective models in the remaining panels

(see Table 2 for details). B—D. Similar plots as in Fig 5B–5D. Shaded areas denote standard deviations.

https://doi.org/10.1371/journal.pcbi.1005615.g006
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measures when used to characterise dendritic trees. By contrast, we showed that SO-sorted

metric measures differ according to cell types and therefore may be useful to categorise or

quantify dendritic tree structures and their respective functions.

SO-sorted topological measures reflect universal properties of binary

trees

Regardless of the method used to select samples out of the set of all binary trees, whether it was

the average of all sorted or unsorted binary trees, randomly selected binary trees, or trees that

guaranteed optimal wiring (MST-based model trees), we found that the relationships between

topological measures and SO followed universal trends. This was also the case for all dendritic

trees we studied, independently of cell type, and spanned measures from branch numbers dis-

tributions and bifurcation ratios to distributions of segment numbers and subtree sizes.

As mentioned above, it has previously been shown analytically that the mean number of

branches of a given Strahler order k in random binary trees asymptotically tends to 41−k as the

number of terminals goes to infinity [31], with a corresponding overall bifurcation ratio of 4

[32,33]. Additionally, most binary trees lie close to a bifurcation ratio of 4 [34], and it has been

suggested that it is inherent to the definition of Strahler order that no binary tree can depart

indefinitely far from this branch number power law [51]. In fact, Van Pelt et al. [52] have

shown that there are only a few unique values that the overall branch bifurcation ratio (i.e., the

averaged ratio between the number of branches of any two successive SOs) can take for the set

of all possible binary trees of a given size (e.g. 7 unique values for the 98 sorted possible binary

trees of degree 10, or 18 unique values for the 10,905 sorted trees of degree 16). It is therefore

not surprising that we found this relation to be true in Galton-Watson (GW) random trees

(Fig 2H, dashed grey line) and in the set of all possible binary trees of a given size (Fig 2E).

The universality of this distribution of branch numbers and bifurcation ratios extends to a

wide range of tree-like structures in nature that most likely do not reach an exact bifurcation

ratio of 4 because of their relatively small size. In our study, overall bifurcation ratios varied

from 2.23–3.77 for different dendritic tree types. In river networks, they commonly range

from 3–5 [22,32]. Similar bifurcation values as well as the general exponential decay relation

with increasing SO have also been observed with bifurcation ratios between 3.05–3.61 in the

dog bronchial system [24], 2.99–3.10 in the human pulmonary arteries [25], 3.41–4.12 in net-

works of conducting particles in a dielectric liquid [53], and 3–5.76 in social networks [54].

They are also present in several different species of botanical trees, with bifurcation ratios

ranging from 3–5.18 [28–30]. As we demonstrated here, this general range is similar for

Table 2. Parameters for synthetic MST-based model trees in Fig 6.

LPTC model

(SN 5)

Purkinje cell

model (SN 6)

Motoneuron

model (SN 3)

Apical pyramidal

dendrite model (SN 4)

Granule cell / basal pyramidal dendrite

model (SN 3)

Hull shape 2D circle

(radius 100)

2D circle (radius

100)

3D sphere (radius

100)

3D cylinder (radius 50,

height 200)

3D cone (height 100)

Root location Offset to edge

[0 -100 0]

Offset to edge

[0 -100 0]

Centre [0 0 0] Centre of base [0 0 -100] Cone vertex [0 0 0]

bf used (other

possible bf)

0.04 (0.03–

0.05)

0.1 0.4 (0.4–0.6) 1.2 (1.1–1.3) 1 (0.9–1.0)

Target points

distribution

Uniform Uniform Uniform Uniform Inhomogeneous along cone height; with

probability values corresponding to height� 65

100

� �2

Number of target

points

700 2500 35 50 25

https://doi.org/10.1371/journal.pcbi.1005615.t002
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neuronal dendritic trees. Previously, the number of branches per SO in Purkinje cell dendrites

has been found to decay exponentially with a linear regression slope for log-transformed data

of -0.52 for cells of SN 6 and -0.46 for cells of SN 7 [35], which are values in a range similar to

what we find in the reconstructed dendrites investigated in this study. Furthermore, Binzegger

et al. [36] investigated axonal branching in cat visual cortex and found it to be topologically

self-similar, i.e. with a bifurcation ratio that is similar between each two consecutive orders

and amounts to 3.32 for both spiny and smooth axons (r = 0.99).

While a significant number of publications have explored branch number distributions and

bifurcation ratios in detail, the universal trend of the SO-sorted subtree size distribution is

more elusive. Subtree sizes at branch points of a given SO increased exponentially with SO in a

Fig 7. Branch diameters in reconstructed dendritic trees as a function of SO. A. Left: Average

normalised diameters (between minimum and maximum values) for nodes of different SO in reconstructed

dendritic trees and their standard deviations (shaded areas); right: same, but with SO values normalised

between 0 and 1 (standard deviations omitted for clarity). B. Diameter values as a function of topological

subtree size for all branch points in the trees, divided in panels for each cell type. Grey line corresponds to the

average diameter for branch points of the same subtree size and is shown until the number of data points

available for mean calculation was less than 0.1% of the data points for topological subtree size 2. Different

colours denote data from different cell types (see legend at top of figure).

https://doi.org/10.1371/journal.pcbi.1005615.g007
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similar manner for all groups of binary trees studied here, including those of real dendrites.

Subtree sizes are connected to distributions of number of branches, since the number of TPs

and BPs in a tree can never be lower than the number of branches. In fact, subtree sizes

appeared to mirror the distributions of number of branches with a steady 4k−SN for SO k. We

assume that those relations could be proven analytically using similar methods as in [31–33].

Surprisingly, a distribution very similar to that of SO-sorted topological subtree size (Fig

4E) was found when calculating the ratio of total dendritic length contained in the subtree of

topological nodes of a given SO (S1 Fig). Such an exponential increase of local subtree weight

with SO may have functional implications for electrotonic compartmentalisation and synaptic

Fig 8. Simulated local synaptic voltage responses as a function of SO. A. Average simulated local

voltage responses to small steady-state synaptic currents (10 pA) injected into topological nodes of SO k in

entire Purkinje cell dendrites (n = 13) of SN 6 with different passive properties. Left: Variation of specific

membrane resistance Rm with fixed specific internal resistivity Ri; right: variation of Ri with fixed Rm. The

Purkinje cell dendrites corresponded to the whole dendrite of the cell, with no additional change of morphology

(see Methods). Standard deviations not shown for better clarity. B. Similar to A, but for the different cell types.

Ri and Rm values were taken from the literature (see Methods). Top shows legend: entire-dendrite

morphologies were taken, as in A (see Methods). Shaded areas denote standard deviations.

https://doi.org/10.1371/journal.pcbi.1005615.g008
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current transfer, in particular since we also found a relationship between subtree sizes and

local diameters (Fig 7B).

Furthermore, the distribution of segment numbers with SO was very similar for all binary

trees we studied. It has previously been found to decay in an exponential manner in Purkinje

cells [35,55], and we observed that this relation holds true for many additional dendrite types.

Here, on average, binary trees behaved similarly to the complete binary tree (CBT), character-

ised by its doubling of segments at every level where SO decreases. This is explained by the fact

that any tree of a given SN> 2 must necessarily contain a certain number of complete subtrees

in order to increase SO at branch points until the corresponding SN is reached (see Results).

The apparent universality and low variability of the SO-sorted segment and branch num-

bers and the branch bifurcation ratio in reconstructed dendrites can thus be explained by the

fact that these statistics are universal for most binary trees and therefore of low descriptive

power, cf. [34]. But it is important to note that if dendrites had followed a particular given

blueprint, the distributions could have been widely different (Fig 2B and 2C). In this way, how-

ever, the universal property of SO-sorted topology in binary trees renders those distributions

essentially useless for quantifying dendritic trees in a meaningful way (see also “Concluding

remarks on Strahler order and neuronal dendrites” below).

SO-sorted metric measures are cell type-specific

The results were very different for metric measures, which exhibited strong correlations with

SO that were cell type-specific in many cases. For example, we found that SO-sorted distribu-

tions of total dendritic length followed a pronounced exponential decay that seemingly

depended on the dimensionality of the dendrites, since planar dendritic trees (e.g. Purkinje

cell dendrites) revealed more shallow slopes than dendrites that extended into 3D space (e.g.

granule cells). In line with this, SO-sorted total length in frog retinal ganglion cell (RGC)

axons has been reported to decrease in a mostly exponential fashion, with 40–50% of the total

length contributed by terminal segments and with a slope that closely resembles our LPTC

data (black line in Fig 5B) [56]. We were able to reproduce this dimensionality effect using

simple MST-based model trees based on optimal wiring principles for the different dendrites,

where the slope of decay was additionally related to the bf parameter (see Fig 6B). The total

dendritic length distribution does not denote a universal relation as seen with the number of

segments or branches but is reflective of specific morphological attributes such as how planar a

dendrite is. Similar observations were made for SO-sorted mean segment and branch lengths.

Interestingly, we were unable to accurately replicate the exponential decay of mean segment

and branch lengths with SO in basal pyramidal and granule cell dendrites using simple MST

models. This might indicate that these trends are a result of the particular features of these

cells, and the measures that we studied here could indeed help to better classify dendrites of

such cell types.

While dendritic trees followed Horton’s law of stream numbers as expected, not all of them

obeyed Horton’s law of stream lengths, which expresses the mean branch length of SO k as a

direct geometric series starting with the mean branch length at SO 1 [22]. In dendrites, we

found highly varying SO-sorted distributions of mean branch lengths, as opposed to the expo-

nential increase postulated by Horton’s law. For real dendritic trees that are flat and were rep-

resented with a low balancing factor in our respective MST models (e.g. LPTCs and Purkinje

cells), mean branch length did appear to follow Horton’s law of stream lengths to some extent:

The distribution increased exponentially with SO until it peaked in the second-to-last order,

i.e. close to the root. Similarly, Hollingworth and Berry [35] observed an exponential increase

in the mean lengths of branches of successive SO in rat Purkinje dendrites, and an increase
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was also reported by Yen et al. in frog RGC axons [56]. For granule cell dendrites and basal

pyramidal dendrites, however, the distribution exhibited an exponential decrease. Since river

networks are planar, it is conceivable that Horton’s law of stream lengths applies only to 2D

trees. Meanwhile, motoneurons and apical pyramidal dendrites appeared to fall somewhere in

between those extremes and did not exhibit clear trends.

The most striking correlation was found between local branch diameters and SO. While the

general presence of a correlation may be reasonably expected in a centripetal ordering system

since diameter has been well established to taper towards the terminals of neurons, there

seems to be no precedent of an investigation of SO-sorted branch diameter in neurons, apart

from a report that diameter increases with SO in frog RGC axons [56]. Because diameter val-

ues strongly determine electrotonic properties of neurons, we also studied the consequences

for synaptic integration and found that simulated local voltage responses to synaptic currents

correlated strongly with SO. Interestingly, similar correlations between diameters and SO have

been observed in other tree structures in nature. Branch diameters appear to increase expo-

nentially with SO in the bronchial tree of dogs [24] and in botanical trees [29,30]. Additionally,

topological subtree size was strongly correlated with SO and to a lesser extent with diameter,

showing a functional relevance of SO.

Potentially, the variations in SO-sorted statistics could also reflect differences in the growth

process: While some neurons such as granule cells could “blossom” like flowers, elongating

mainly the branches close to the soma, others such as Purkinje cells could mostly develop by

growing new terminal branches and densifying the fixed space they occupy. In line with this,

Van Pelt et al. [43] demonstrated that the geometry of guinea pig Purkinje cells can be repli-

cated using a dendritic growth model that favours branching at distal locations.

Concluding remarks on Strahler order and neuronal dendrites

SO has advantages as well as disadvantages when compared to other branch ordering systems.

Uylings et al. [13] reviewed different ordering methods for dendrite branching and concluded

that the Strahler method should preferentially be used when studying branching patterns that

are very asymmetric, or when studying tree structures with a very extensive branching pattern

such as Purkinje cells, because the tree’s Strahler number SN is not as high as the maximum

branch order in the centrifugal system. A caveat of the method is its sensitivity especially to the

addition or loss of terminal segments, as these can alter the order of many branches in the tree.

It has furthermore been suggested that centripetal ordering schemes are superior when exam-

ining branch probabilities in distal regions of the dendrite, but that centrifugal ordering of

branches is useful for branching structures near the soma or root of the tree [16].

The main usage of Strahler ordering applied to neuronal morphology in the literature so far

is concerned with the distribution of the SO-sorted number of branches. It has been used for

classification of branching complexity of Drosophila da neurons, as mentioned in the Intro-

duction (e.g. [37,38,40–42]), and various other studies used that distribution to ascertain dif-

ferences in “branching complexity” in various cell types, mostly aforementioned da neurons or

Purkinje cells, between different conditions such as wild-type vs. knock-out cells (e.g.

[38,40,57–60]). In all of these studies, the authors used the actual number of branches, which

would have varied compared to the normalised number. However, since the normalised

branch numbers distribution is on average very similar in different groups of trees (dendritic

or otherwise), it is quite redundant to compare the number of branches of different orders

between cells because the slope of the curve is not likely to differ very much, as discussed

above. In fact, in most of those studies, it would have been enough to compare just the number

of terminal segments without using any branch ordering system (or, perhaps, with the
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additional information of the SN): Where actual numbers were given in various publications

[38,57–59,61,62], we plotted the number of branches per SO and saw that they did indeed fol-

low the characteristic exponential decay that was close to a 41-k slope for SO k if values were

normalised to the total number of branches. In most of the publications surveyed, significant

differences in branch numbers appeared only in SO 1, i.e. the number of terminals. We argue

that using SO only in this way is limiting and redundant, and that more interesting results

might emerge if Strahler ordering were used more often in conjunction with metric measures

such as total length per SO (only seen in one publication pertaining to axonal morphology;

[56]). Some studies, e.g. [60], did investigate total length between two groups of cells, but there

may be benefits to looking at the SO-sorted total length distribution as well as it might offer

information regarding the dendritic locations where the length changes most significantly.

Further metric SO-sorted measures such as mean branch and segment length might also be of

use to quantify differences in morphology and branching complexity.

Our study demonstrates that one has to take great care when interpreting the topology of

trees using SO because of the many universal features that make such quantification potentially

useless. This stresses the importance of using computational models to better interpret the

results from quantitative measures that are commonly used in neuroscience. Finally, we

observe that SO can be a useful tool to classify tree structures and their functional relevance

when used in conjunction with adequate metric information.

Methods

All analyses were performed using the TREES toolbox, an open-source software package for

MATLAB (Mathworks, Natick, MA, USA), which provides tools for analysing and generating

neuronal morphologies [46,63] (www.treestoolbox.org). We used functions of the TREES

toolbox as well as additional custom MATLAB code to generate model dendritic trees, to pre-

process reconstructed real dendrites, and to determine and visualise the various Strahler

order-sorted branching statistics. A function strahler_tree to calculate Strahler order (SO) val-

ues for each node in a tree was implemented and will be made available in the TREES

toolbox package.

A set of all possible binary trees

In order to obtain the set of all possible binary trees of a given maximal size, we calculated all

possible instances using a formal language defined in the following way: We started with the

string ‘BTT’ representing a binary tree on 3 nodes, where ‘B’ stands for branch point and is fol-

lowed by two subtrees and ‘T’ is a termination point. Recursively, all ‘T’ elements were then

replaced by new branches ‘BTT’, one by one resulting in as many next generation trees with

each two additional nodes. After calculating all trees of a given generation, all exact duplicates

were removed. This procedure was then continued until the target tree size was obtained.

Notice that the number of binary trees of a given size grows exponentially with the number of

nodes (yielding 1, 2, 5, 14, 42, 132, 429, 1,430, etc. as the number of trees in each generation).

For example there exist 9,694,845 binary trees on 31 nodes (16 ‘T’s), which was at the limit of

the computing power available to us. We chose the set of all possible binary trees of degree 16

because we wanted to investigate a set that would include a complete binary tree. See Fig 2A

for resulting sample binary trees. Note though that many of these trees were equivalent in

terms of the topological structure since permutations of subtrees at every branch point are

actually equivalent (for example a tree ‘BBTTT’ is equivalent to ‘BTBTT’; see also green box in

Fig 2A for two topologically equivalent binary trees). Apart from the unsorted set of trees

described above (i.e., the set which allows multiple topologically equivalent binary trees with
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differing ‘B’-and-‘T’ strings), we therefore calculated the reduced (sorted) subset that con-

tained only topologically unique trees. To determine this sorted subset, the sort_tree function

from the TREES toolbox was used to arrange all trees of a newly generated generation such

that heavy subtrees would always be represented first in the ‘B’-and-‘T’ strings, thus enabling

us to exclude duplicates. A few remaining duplicates were identified by an exhaustive search

comparing all permutations of all subtrees at each branch point in the remaining trees. In this

way, we obtained all 10,905 [52,64] sorted binary trees on 31 nodes (16 ‘T’s). Finally, tree struc-

tures were generated from the resulting ‘B’-and-‘T’ strings using the TREES toolbox function

BCT_tree. The resulting trees were then analysed further using the TREES toolbox.

Galton-Watson (GW) random branching model

We generated random binary trees by using a critical Galton-Watson random branching pro-

cess [44]. This growth process starts with one terminal node at generation 1. For each succes-

sive generation, each terminal node of the previous generation is treated in one of the

following two ways: (1) with probability Pst, growth stops there; (2) with probability Pbr, the

node becomes a branch point, and edges are added with two new terminal nodes (Fig 2F). Ter-

minal growth was previously found to be compatible with the observed topologies in real den-

drites [65]. A Galton-Watson process is called critical if Pst = 0.5 and Pbr = 0.5. We used

custom MATLAB code to generate 10,000 random topological trees, terminating each growth

process in the cases when the tree size reached 800 nodes.

Synthetic minimum spanning tree (MST) based model neurons

Spatially embedded minimum spanning trees (MST) take into account optimal wiring consid-

erations that are important for real neurons. MST models (here we use theMST_tree function

from the TREES toolbox) were previously used successfully to model a large palette of den-

drites [7,46,47,66–68] and axons [69]. These models generate tree structures that connect a set

of target nodes to minimise the total dendrite length as well as the cost for short paths from the

target nodes to the root along the tree. Target nodes are given to the algorithm and may be

chosen to be distributed inside specified two- or three-dimensional areas according to certain

rules (e.g. uniform distribution when coordinates for target nodes are generated as uniformly

distributed random numbers on a specified interval), and will end up being the branch points,

termination points, and continuation points of the tree. The cost for short paths from target

nodes to the root is weighted with the balancing factor (bf), with typical values between 0 and

0.9 in real dendrites. When bf is low, the total wiring cost is kept to a minimum and the result-

ing tree approaches a minimum spanning tree. When bf is high, direct paths from target points

to the root are given more importance than the pure conservation of wiring.

To study topological measures in MST models (Fig 3), we uniformly distributed a number

of random target points (30, 150, 500 or 1,200, in order to obtain as many trees as possible for

SN 3, 4, 5, and 6, respectively) in a two-dimensional circular area of 10,000 μm2 with a root

node located in the centre. 1,000 MST-based model trees were generated for each combination

of bf (between 0 and 0.9, in steps of 0.1) and target point number. Here, theMST_tree function

was constrained to bifurcations (option ‘-b’), enforcing the generation of binary trees. The

resulting trees were repaired using the repair_tree function, which assigns a number to every

node in the tree according to a predefined standard, and all nodes from the root to the first

branch point were deleted, forcing every tree to start with a branch point to best match the

concept of binary trees. If nodes were deleted in the process, the repair_tree function was

applied once again to update node indices accordingly.
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In order to investigate the source of the cell type-specific differences in SO-sorted metric

measures of real dendrites (Fig 5), we modelled the SO-sorted distributions by finding the sim-

plest MST model parameters necessary to approximate those distributions (Fig 6). The initial

model conditions were similar to the model described above with simple two- or three-dimen-

sional (depending on the real cells) round spanning fields and a root node located in its centre.

The complexity of the hull, the root location and the statistics of the target point distributions

were adjusted manually in a trial-and-error procedure in an attempt to best reproduce—with

as few modifications as possible—all SO-sorted branching statistics as seen in the real den-

drites. In all cases, the balancing factor and number of target points were varied to best match

the real dendrite statistics and SN values. Specific parameters for each of the five models are

described in Table 2 and Fig 6A (bottom row). Binary synthetic trees were obtained in a simi-

lar manner as described above. 100 synthetic trees were generated for each of the models.

Reconstructions of real morphologies

Reconstructions of real dendritic morphologies (examples see Fig 4A) were taken from the

NeuroMorpho.Org database (accessed on 26/11/2015) with the exception of the blowfly LPTCs

[66], which were taken directly from the set of sample cells in the TREES toolbox (see Table 3

for details). A preselection of neurons was conducted according to metadata filtering on the

NeuroMorpho.Org website (Table 4). In brief, we restricted the dataset to neurons with com-

plete dendrites that were part of the control conditions in any given experiment. All prese-

lected neurons were manually inspected in three-dimensional view. Since the metadata is self-

reported by the contributing labs, the quality of “complete” reconstructions may differ from

dataset to dataset. Many reconstructions exhibited sudden step-like jumps in depth, a common

problem in three-dimensional reconstructions. We excluded such dendrite reconstructions

with insufficient quality by visual inspection but no objective criteria to appropriately quantify

the quality of the tracings were used. Reconstructions of typically three-dimensional neurons

(e.g. granule cells, pyramidal cells) that did not or did only slightly extend into the third

dimension were also excluded from the analysis. The number of suitable cells left for each cell

type can be found in Table 3. Despite the fact that our NeuroMorpho.Org metasearch required

diameter information, we found that some of the remaining cells had poorly reconstructed

diameter values (i.e., nearly constant diameter for all nodes). These cells were still used for

most analyses in this study but were excluded from the SO-sorted branch diameter computa-

tion, which was therefore performed on a lesser number of dendritic trees per cell type (see

Table 3).

We then deleted all cell regions that were not labelled “dendrite” (i.e., axon and soma

regions). Deletion of a single cell’s soma resulted in multiple dendritic trees (Table 3) if there

were several primary dendrites emerging from the soma. We pooled data for all dendritic trees

of a cell type for analysis, with the exception of pyramidal cells, where we analysed apical and

basal trees as separate groups due to their very different morphologies. All dendritic trees were

then repaired with the TREES toolbox function repair_tree, replacing branch points with more

than two daughters with multiple consecutive bifurcations to restrict ourselves to binary trees

(no multifurcations allowed). Furthermore, we identified the first branch point following the

root (if it was not the root node already) and deleted all previous nodes. A deletion was fol-

lowed by another application of the repair_tree function. This deletion step was performed to

ensure that all analysed dendritic trees were binary trees that started with a branch point. How-

ever, it must be noted that this is an alteration of the original morphology and leads to exclu-

sion of data concerning the length and presence of small branches of higher Strahler orders

(e.g. dendrites that emerge from the soma as a single branch before they first bifurcate).
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Strahler order (SO) analysis

Our morphometric analysis distinguishes between dendrite segments and branches. A seg-

ment is defined as a piece of dendrite connecting two consecutive topological nodes in the tree

(BP—BP or BP—TP). Consecutive segments (moving from terminals towards the root) of the

same SO form one branch of that order. A branch may consist of only one segment (e.g., all

terminal segments are also terminal branches), but often consists of multiple segments, espe-

cially for higher orders (Fig 1B, the tree contains three SO 2 segments, but only two SO 2

branches, one of which is composed of two segments). We additionally distinguish between

node and segment SO to determine the highest order in a tree, its Strahler number (SN). We

call the highest SO assigned to a segment in a tree its segment Strahler number. The highest

SO of any node in a tree is its node Strahler number. In most cases, these two are interchange-

able. However, when two segments of the same order meet at the root node of the tree, they

are different (e.g. in Fig 1A: segment SN = 2, but node SN = 3). For node-based measures (sub-

tree size, branch diameter, local voltage response), we forced functions to consider the root

node’s SO as equal to the tree’s segment SN in the few cases where node and segment SN dif-

fered. This step did not significantly alter the resulting SO-sorted measures but was performed

to ensure that all trees sharing a common segment SN would also display a common number

of data points (from SO 1 to the order corresponding to the segment SN) that were averaged

for visualisation in the figures.

The topological measures we analysed are the number of segments, number of branches,

branch bifurcation ratio, and the size of topological subtrees. These measures do not require

Table 3. Overview of reconstructed morphologies.

Cell type (brain

area)

Number Number, with

diameter

Trees Trees, with

diameter

Taken from archive (species)

Granule cells

(hippocampus)

60 30 59 30 Cho (mouse), Lee (mouse), Vuksic (mouse)

Motoneurons (spinal

cord)

70 66 402 371 Alvarez (rat), Ascoli (mouse), Burke (cat), Cameron (cat),

Chmykhova (turtle), Fyffe (cat), Rose (cat)

Purkinje cells

(cerebellum)

13 13 14 14 Dendritica (rat), Dusart (mouse), Martone (mouse, rat)

Pyramidal cells

(hippocampus)

195 93 219 (apical),

371 (basal)

101 (apical),

185 (basal)

Amaral (rat), Ascoli (rat), Barrionuevo (rat), Beguin (mouse), Gulyas

(rat), Jaffe (rat), Johnston (rat), Kim (mouse), Korte (mouse),

Spruston (rat), Turner (rat), Wittner (guinea pig), Wu (mouse)

LPTCs (lobula plate) 55 55 92 92 [66] (blowfly)

Number–number of suitable reconstructed cells.

Number, with diameter–number of reconstructions used for diameter computations.

Trees–number of suitable reconstructed dendritic trees with SN > 2 after soma and axon deletion.

Trees, with diameter–number of reconstructed dendritic trees used for diameter computations.

Taken from archive (species)–NeuroMorpho.Org archive name and species.

https://doi.org/10.1371/journal.pcbi.1005615.t003

Table 4. Selection criteria in NeuroMorpho.Org database metadata search.

anatomy! cell type! principal cell! granule cell Purkinje cell motoneuron pyramidal cell

anatomy! brain region! hippocampus cerebellum spinal cord hippocampus

completeness! structural domain! {dendrites, soma, axon OR dendrites, soma, no axon}

completeness! physical integrity! search by dendrites! complete

completeness!morphological attributes! diameter, 3D, angles

experiment! experimental condition! control

https://doi.org/10.1371/journal.pcbi.1005615.t004
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any metric information and therefore they enable us to compare these distributions across not

only reconstructed neurons and synthetic MST morphologies, but also Galton-Watson ran-

dom branching model trees as well as the set of all possible binary trees of degree 16. Except

for Fig 2B and 2C, SO-sorted distributions of number of segments and branches were normal-

ised (to the total number of segments and branches in the tree, respectively) to be able to com-

pare distributions of trees of different sizes. The branch bifurcation ratio was obtained by

visualising the number of branches of any SO k with the number of branches at SO k + 1.

When bifurcation ratios between all consecutive orders in a tree are similar, the tree is said to

be topologically self-similar. Hence, the bifurcation ratio provides information about the frac-

tal degree of a structure. We calculated overall bifurcation ratios by performing a linear regres-

sion on the number of branches of SO k against the number of branches of SO k +1 for all

trees of a dendrite type. Topological subtree sizes counting the number of BPs and TPs for any

BP in the tree should intuitively increase for centripetal branch ordering schemes such as SO.

Topological subtree sizes were also normalised (to the total number of topological nodes in the

tree) and used for Figs 2, 3 and 4.

The following metric measures were determined as a function of SO for reconstructions of

real neurons and for their respective MST models: total dendritic length, mean branch length,

and mean segment length. Also, branch diameters were investigated in the reconstructed mor-

phologies where diameter values were available. Normalised total lengths per SO express the

proportion of total dendritic length in each SO. Normalised mean branch and segment lengths

per SO were obtained by dividing the total length value for a given SO by the total number of

branches or segments respectively for that given SO value. These values were further divided

by the sum of the average branch or segment length values of all SO (integral under the curve

is then 1 in all cases) to keep the resulting distributions in the same range. Mean branch diame-

ters per SO were calculated by taking the sum of the diameters of all nodes with a given SO

and dividing that by the number of nodes of that given SO. Normalised relative values between

0 and 1 were obtained by setting the lowest mean diameter value for any order (this was always

SO 1) to 0 and the highest mean diameter value (this was always the order corresponding to

the tree’s SN) to 1.

Electrotonic measures in passive dendritic trees were calculated on a slightly differently

pre-processed dataset because we took values for Ri and Rm from the literature that described

whole cells instead of dendritic trees that were once part of a bigger dendritic field. We there-

fore took all neurons with reasonable diameter information (see Table 3, “Number, with diam-

eter”), removed soma and axon regions in such a way that the dendrite would stay connected

and not result in multiple dendritic trees, and repaired the dendrite with the repair_tree func-

tion, which may result in a small change of morphology and topology.

To simulate the average local voltage response to an injection of 10 pA into a topological

node of SO k, the dendritic tree’s electrotonic signature given its specific membrane conduc-

tance Gm = 1/Rm and specific internal resistivity Ri was determined using the sse_tree function.

Rm and Ri for the different cell types were taken from the literature [70–73] for Fig 8B. The

diagonal of the resulting matrix contained the local input resistances in MΩ of every node in

the tree. These values were averaged between all topological nodes that shared the same SO. In

order to simulate the local voltage response to a small steady-state synaptic current injection of

10 pA, the values were divided by 100 and the unit became mV. For normalisation, all values

were divided by the average value for the terminal nodes (SO 1). Three motoneurons (‘Alva-

rez-Control-Cell-1.CNG’, ‘Alvarez-Control-Cell-2.CNG’, and ‘Alvarez-Control-Cell-3.CNG’)

had to be excluded from this simulation because of their high number of nodes.
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A note concerning data visualisations

All figures of SO-sorted distributions show averages of trees that share the same segment SN.

In this way, patterns in the data are not skewed by averaging over model trees or real dendrites

in a sample that have different SN values. For reconstructed morphologies, we chose the most

abundant SN value for each cell type for visualisation, hence only the subset of the data where

all trees share that SN value was plotted (e.g. see Fig 4B: for granule cells (in red), there were 59

dendritic trees analysed, but the graph shows only the average of those 53 trees in the subset of

all granule cell dendritic trees that had segment SN 3).

Supporting information

S1 Fig. Length of subtree per SO for topological nodes in real dendritic trees. Average

(lines with markers) and standard deviations (shaded areas) of normalised subtree lengths for

all topological nodes as a function of SO in real dendritic trees. Colours indicate cell types (for

legend see Fig 4A). Values were normalised by expressing them as a ratio of total dendritic

length. Grey dashed lines same as in Fig 4E.

(TIF)
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