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Abstract We present a novel approach to finding critical
points in cell-wise barycentrically or bilinearly interpolated
vector fields on surfaces. The Poincaré index of the critical
points is determined by investigating the qualitative behav-
ior of 0-level sets of the interpolants of the vector field
components in parameter space using precomputed combina-
torial results, thus avoiding the computation of the Jacobian
of the vector field at the critical points in order to deter-
mine its index. The locations of the critical points within a
cell are determined analytically to achieve accurate results.
This approach leads to a correct treatment of cases with two
first-order critical points or one second-order critical point
of bilinearly interpolated vector fields within one cell, which
would be missed by examining the linearized field only. We
show that for the considered interpolation schemes determin-
ing the index of a critical point can be seen as a coloring prob-
lem of cell edges. A complete classification of all possible
colorings in terms of the types and number of critical points
yielded by each coloring is given using computational group
theory. We present an efficient algorithm that makes use of
these precomputed classifications in order to find and classify
critical points in a cell-by-cell fashion. Issues of numerical
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stability, construction of the topological skeleton, topologi-
cal simplification, and the statistics of the different types of
critical points are also discussed.
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1 Introduction

The visualization of vector field topology is a problem that
arises naturally when studying the qualitative structure of
flows that are tangential to some surface. As usual, we use
the term surface for a real, smooth 2-manifold (equipped
with an atlas consisting of charts), see for example [18] for
an introduction to Riemannian Geometry. Having its roots in
the theory of dynamical systems, the topological skeleton of
a Hamiltonian flow on a surface with isolated critical points
consists of these critical points and trajectories (streamlines)
of the vector field that lie at the boundary of a hyperbolic
sector and connect two of the critical points. Helman and
Hesselink [9] introduced the concept of the topology of a
planar vector field to the visualization community and pro-
posed the following construction scheme: (1) critical points
are located, (2) classified, and then (3) trajectories along
hyperbolic sectors are traced and connected to their originat-
ing and terminating critical points or boundary points. Step
(2)—the classification of a critical point—is usually based
on the Jacobian of the vector field, see [19]. Trajectories of
step (3) are typically constructed by solving an ordinary dif-
ferential equation for particle tracing.

Although a vast body of previous work in the field of
flow visualization focuses on the problem of how to extend
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the method of Helman and Hesselink to vector fields on arbi-
trary surfaces as well as the second and third step of the above
algorithm, not much attention has been paid to the first step.
In this paper, we specifically address the identification and
classification of critical points in parameter space.

As efficient computer-based visualization algorithms usu-
ally work with discrete parametrized versions of the sur-
faces involved—examples of popular discretization schemes
are for example triangulated or quadrangulated versions of
the surface—we will in this paper not focus on the well-
researched field of how to parametrize a given surface (see
[6] for a recent survey) but assume that a surface always
comes equipped with a globally continuous discrete parame-
trization that allows a cell-wise (local) barycentric or bilinear
interpolation scheme of a vector field tangential to the surface
in parameter space.

While this task is rather easy for linear vector fields,
the problem setting becomes more interesting for bilinear-
ly interpolated fields. Bilinear interpolation is ubiquitous in
scientific visualization because it is popular for widely used
uniform or curvilinear grids representing planar or curved
surfaces. Since bilinear interpolation is not linear, it can lead
to higher-order critical points, which are neglected by often-
used linearization approaches.

In this paper, we introduce a new method that locates and
classifies all critical points within piecewise linearly (bary-
centrically) or bilinearly interpolated two-dimensional grids.
Our method determines the index of a critical point without
the need to evaluate the Jacobian of the vector field in the
critical point in order to determine its Poincaré index. For
the case of bilinearly interpolated vector fields, our method
is able to detect higher-order critical points and the pres-
ence of two first-order critical points within one cell, which,
to our knowledge, has not been achieved with the common
methods [10] for the bilinear interpolation scheme before.
Figure 1 shows a corresponding example and illustrates our

classification method. Our approach is based on the idea that
investigating the qualitative behavior of 0-level sets of the
components of the interpolated vector field provides infor-
mation needed to compute the Poincaré index of a critical
point. All qualitatively different possibilities of this behavior
and the types of critical points yielded by each possibility are
completely classified using the computational group theory
tool GAP (Groups, Algorithms, and Programming) [7]. See
the enumeration of cases for marching cubes and generic sub-
stitope algorithms by Banks et al. [3] for a previous example
of an application of computational group theory in the field
of scientific visualization. Furthermore, we discuss a cell-
based topology simplification method as well as the question
of numerical stability. Our approach results in an efficient,
accurate, and robust cell-based algorithm for detecting all
critical points of barycentrically or bilinearly interpolated
2D vector fields.

The paper is organized as follows. First, we will give a
short review of the visualization literature dealing with vec-
tor field topology. Then, the theoretical foundations of vector
field topology, namely the theory of the qualitative behavior
of second-order dynamical systems along with such funda-
mental notions as those of critical points, separatrices, and
the Poincaré index of a critical point are reviewed. Follow-
ing this, we will present our new approach—first the general
framework will be discussed and then applied to two cases:
barycentrically and bilinearly interpolated vector fields.
Then, we will deal with open issues such as critical points
on the boundary of cells and numeric stability followed by
a more detailed description of the cell-based algorithm. We
will conclude giving results and a short review of our method.

This paper has accompanying material in the form of
online resources, namely the GAP programs used in this
paper (Online Resource 3) and lists of equivalence classes of
colored cells referred to in Theorem 2 (Online Resource 1)
and Theorem 5 (Online Resource 2).

(c)(b)(a)

Fig. 1 Classification of critical points for three intersection cases for
the 0-level sets of the two vector field components f1 (cyan) and f2
(orange) of a bilinearly interpolated vector field f = ( f1, f2)

T : a no
intersection of the level sets, b touching of the level sets yielding one
critical point, c double intersection of the level sets yielding two crit-
ical points (one saddle and one non-saddle). The colors of the vector

arrows encode the types of characteristic areas as defined in Sect. 4.2
(green = ++, yellow = +−, blue = −+, red = −−), a set of
streamlines is shown in gray, and critical points lying in the intersection
set of the two level sets are shown as black dots. Each vertex of a square
is marked with ++, +−, −+, −− according to the sign of f1 and f2
at that vertex
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2 Previous work

Topology-based methods for planar vector fields were first
proposed to the visualization community by Helman and
Hesselink [9], employing methods from the theory of dynam-
ical systems [1] to planar linear (or linearized) vector fields
in order to visualize flow characteristics. Their work has trig-
gered a large body of further research on topology-based flow
visualization, an overview of which is given by Post et al. [22]
and Scheuermann and Tricoche [25].

The case of a planar linear vector field is relatively simple
to deal with, but it has a couple of drawbacks, most nota-
bly that only first-order critical points can be detected. Much
effort has been put into methods to overcome this drawback
imposed by the interpolation scheme and to addresses the
issue of detecting and processing higher-order critical points
of interpolated vector fields, also of vector fields on arbitrary
surfaces [14]. Such higher-order critical points can be found,
for example, by using piecewise linear interpolation schemes
in combination with a clustering of first-order critical points
according to Tricoche et al. [29]. Another example is the
work by Theisel [26], who proposes a method for designing
piecewise linear planar vector fields of arbitrary topology.
Nonlinear interpolation schemes have been investigated by
Scheuermann et al. [23] and Zhang et al. [31]. Scheuermann
et al. [24] propose a way to approximate higher-order critical
points using Clifford algebra. Li et al. [15] use interpolation
schemes based on a polar coordinate representation to detect
vector field singularities on a surface.

In contrast to the global variational approach taken in [21]
in which the authors construct a discrete Hodge decomposi-
tion in order to obtain location and type of critical points of
vector fields on polyhedral surfaces, our approach is local and
cell-oriented. It may thus be easier to implement when a dis-
crete parametrization of the surface is already given and can
be used in conjunction with other local, grid-based methods.

3 Theoretical background

The methods used for extracting vector field topology are
founded upon the theory of the qualitative behavior of
dynamical systems. Most of the brief review of the essen-
tial theory in this section is taken from the books [1,5,19].

3.1 Dynamical systems

Definition 1 A dynamical system on E ⊂ R
n , an open sub-

set of R
n , is a C1 map φ : R × E → E , where φ = φ(t, x)

with t ∈ R, x ∈ E , that satisfies

1. φ(0, x) = x∀x∈E ,
2. φ(s, x) ◦ φ(t, x) = φ(s + t, x) ∀x∈E, u,v∈R .

Dynamical systems are closely related to autonomous sys-
tems of differential equations. On the one hand, let E ⊂ R

n

be open and let f ∈ C1(E) be Lipschitz continuous on E .
Then the initial value problem of the autonomous system of
differential equations

ẋ = dx
dt

= f(x), (1)

with x(0) = x0 for any x0 ∈ E has a unique solution defined
for all t ∈ R by virtue of the Picard–Lindelöf theorem. For
each initial value x0 ∈ E this induces a mapping φ(t, x0) :
R × E → E referred to as a trajectory of the system (1). The
mapping φ then lies in C1(R × E) and thus is a dynamical
system in the sense of Definition 1. It is called the dynam-
ical system induced by the system of differential equations
(1). On the other hand, if φ(t, x) is a dynamical system on
E ⊂ R

n , then

f(x) = d

dt
φ(t, x)|t=0

defines a C1 vector field f on E and for each x0 ∈ E , φ(t, x0)

is the solution to the initial value problem with x = x0 of (1).

3.2 Critical points

An important concept in the field of dynamical systems is
the notion of a critical point:

Definition 2 An equilibrium or critical point x0 ∈ R
n of a

dynamical system φ is a point where φ(t, x0) = x0 ∀t∈R .
If the dynamical system is induced by a system of differ-
ential equations (1), then a critical point x0 of φ is a point
where f(x0) = 0. If the Jacobian Df(x0)has only eigenvalues
with nonvanishing real part, x0 is called a hyperbolic critical
point. If det Df(x0) �= 0, then x0 is called non-degenerate
or first-order critical point. Otherwise it is called degenerate
or higher-order critical point.

A system of differential equations can be approximated
by its linearization around a critical point x0 without chang-
ing its qualitative behavior if x0 is a hyperbolic critical point
of that system (Hartman-Grobman theorem [19]). For planar
linear systems, only certain types of critical points can occur
and these can be classified in terms of the eigenvalues of the
Jacobian as shown in Fig. 2 (here only non-degenerate cases
with det Df(x0) �= 0 are considered).

3.3 Poincaré index of a critical point

In order to classify critical points of vector fields one can
use the notion of the Poincaré index (or index for short) of a
critical point.

Definition 3 Let f = ( f1, f2)
T be a C1(E) vector field on

some open E ⊂ R
2. If x0 is an isolated critical point of f and
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(a) (b) (c)

(d) (e) (f)

Fig. 2 First-order critical points of planar vector fields classified in
terms of the eigenvalues λ1, λ2 of the Jacobian: a saddle (�(λ1)�(λ2) <

0, 	(λ1) = 	(λ2) = 0), b attracting node (�(λ1),�(λ2) < 0, 	(λ1) =
	(λ2) = 0), c attracting focus (�(λ1),�(λ2) < 0, 	(λ1),	(λ2) �= 0),
d center (�(λ1) = �(λ2) = 0, 	(λ1),	(λ2) �= 0), e repelling
node (�(λ1),�(λ2) > 0, 	(λ1) = 	(λ2) = 0), f repelling focus
(�(λ1),�(λ2) > 0, 	(λ1),	(λ2) �= 0)

� ⊂ E a Jordan curve such that x0 is the only critical point
of f in its interior, then the Poincaré index of x0 (or index for
short) is

If (x0) := If (Γ ) := 1

2π

∮

Γ

dθ ∈ Z,

with θ = arctan f2
f1

.

It can be shown that isolated first-order critical points (i.e.
isolated critical points for which the Jacobian of the vec-
tor field in the critical point has no eigenvalue of 0) have a
Poincaré index of ±1 and that a saddle has a Poincaré index
of −1, whereas non-saddles have a Poincaré index of +1 (see
Fig. 2).

3.4 Topological equivalence and sectors

Let us now establish the fundamental notion of topological
equivalence of vector fields:

Definition 4 Suppose that f ∈ C1(E) and g ∈ C1(F) with
open sets E, F ⊂ R

n . The two autonomous systems of dif-
ferential equations ẋ = f(x) and ẋ = g(x) and thier induced
vector fields are said to be topologically equivalent if there
exists an orientation preserving homeomorphism that maps
trajectories of the first system onto trajectories of the seconds
system.

Markus [16] showed that for planar C1 systems of differ-
ential equations the condition of being topologically equiva-
lent is equivalent to the systems having the same separatrix

(a) (b) (c)

Fig. 3 The three distinct topological sectors of the vector field around
an isolated critical point with nonvanishing Jacobian (modulo the oper-
ation of reversing the vector field direction): a hyperbolic sector (with
two separatrices), b parabolic sector, c elliptic sector

configurations, where a separatrix of a system (1) is a
trajectory of (1) which is either a critical point, a limit cycle,
or a trajectory lying on the boundary of a hyperbolic sector
as defined below. This justifies the use of the term vector
field topology for the topological skeleton of a vector field
consisting of separatrices of that field.

The notion of sectors was first introduced by Poincaré [20]
to investigate higher-order critical points of planar systems,
and later extended by Bendixon [4] and Andronov [1]. The
idea is that one can describe the qualitative behavior of a
planar C1 vector field f in a suitable neighborhood N (x0)

of an isolated critical point x0 of f in terms of connected
regions, so called sectors, which form a partition of N (x0).
Within each sector the trajectories of f exhibit a behavior
that is characteristic for this type of sector. It can be shown
that there exist three topologically different types of sectors:

Definition 5 A sector of a critical point x0 can be classified
as a hyperbolic, parabolic, or elliptic sector according to its
topological structure as shown in Fig. 3.

Tricoche et al. [29] also used the idea of sectors to model
higher-order critical points with a piecewise linear interpo-
lation scheme.

3.5 Bifurcation theory

Bifurcation theory is based on the notion of structural stabil-
ity of a vector field due to Andronov and Pontryagin [2]: if
the qualitative behavior of a dynamical system (1) does not
change for small perturbations of the vector field f , then that
vector field is called structurally stable. If f is not structurally
stable, the topological skeleton of the vector field changes
even under small perturbations of the vector field f and f is
said to be structurally unstable or to lie within the bifurcation
set.

The perturbation of the vector field is usually modeled by
an additional parameter μ ∈ R:

dx
dt

= f(x, μ). (2)
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A value of μ = μ0 ∈ R for which the system (2) lies in the
bifurcation set is called a bifurcation point of (2) and μ0 is
then called bifurcation value of (2).

Bifurcation theory has been studied extensively, see for
example the book by Guckenheimer and Holmes [8]. It also
explains the splitting of higher-order critical points into sev-
eral nearby first-order critical points: it can be shown that,
if a vector field f has an isolated critical point x0 of higher
order, there exists a perturbation of f such that x0 splits into
several isolated first-order critical points nearby.

4 Classifying critical points without using the Jacobian

In this section, we show how the Poincaré index of an isolated
first-order critical point can be computed by evaluating the
sign configuration of the vector field’s components on a finite
set of sample points in a neighborhood of the critical point,
reminiscent of the marching-cubes classification applied to
isosurfaces in scalar fields.

4.1 Setting

From now on let f ∈ C1(E) be a vector field f : E ⊂ R
2 → R

2

defined on an open E ⊂ R
2 such that f is Lipschitz contin-

uous on E and only has non-degenerate first-order isolated
critical points.

4.2 ω-level sets, areas of characteristic behavior

We introduce the notion of areas of characteristic behavior
that will enable us to calculate the index of a critical point.

Lemma 1 Let f = ( f1, f2)
T be a vector field like in 4.1

and x0 ∈ E an isolated first-order critical point of f , i.e.
det Df(x0) �= 0. Then, x0 lies in the intersection of the 0-
level sets c1 and c2 of f1 and f2. Furthermore, there exists
an ε > 0 such that c1 and c2 are infinitesimally straight lines
(i.e. lie infinitesimally close to straight lines) in an ε-neigh-
borhood of x0.

Proof By definition, a critical point of f has to lie in the
intersection set of the 0-level sets of the components of f .
Since f is linearizable around x0, Taylor’s theorem leads to
f(x) ≈ f(x0) + Df(x0)(x − x0) with x in the ε-ball Bε(x0).
Since Df(x0) has full rank, the 0-level sets of Df(x0) are
straight lines intersecting in x0. ��

Definition 6 Let f = ( f1, f2)
T be a vector field like in 4.1

and x0 ∈ E an isolated first-order critical point of f . Then for
an ε > 0 the 0-level sets c1 of f1 and c2 of f2 partition the ε-
ball Bε(x0) of x0 into four disjoint open subsets A1, . . . , A4

called areas of characteristic behavior or areas for short.

Fig. 4 Area sequence (A1, . . . , A4) around an isolated critical point of
a C1 vector field f = ( f1, f2)

T defined by the 0-level sets c1 and c2 of
f1 and f2. The area sequence of a critical point x0 can be constructed
by walking monotonously around the boundary of an ε-ball Bε(x0) of
x0 starting at an arbitrary position (shown as dashed line above) and
collecting the intersection points of c1 and c2 with Bε(x0)

In each area, the signs of f1 and f2 do not change, i.e. for
arbitrary 1 ≤ i ≤ 4 and x, y ∈ Ai the following holds:

f j �= 0 and sgn( f j (x)) = sgn( f j (y)) for j = 1, 2.

The set of areas A1, . . . , A4 around a critical point can be
seen as an ordered, cyclic sequence of areas according to the
order in which they intersect with the boundary of Bε(x0), as
illustrated in Fig. 4. We consider clockwise traversal direc-
tion unless otherwise noted.

Since each of the two vector field components can either
be positive or negative in one area, there exist four differ-
ent types of characteristic areas as shown in Fig. 5(a). In
the following, areas are written as ordered 2-tuples over the
set {+,−} or equivalently as elements of the set {1, 2, 3, 4},
where 1 = (+,+), 2 = (+,−), 3 = (−,+), 4 = (−,−).

(a)

(b)

(c)

Fig. 5 Areas of characteristic behavior and area sequences around a
critical point C : a the four types of characteristic areas Ai , b coun-
terclockwise and c clockwise turning behavior of the areas, yielding a
critical point of index −1 and +1, respectively
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Area sequences can then be written as ordered 4-tuples over
the set of areas, i.e. as ordered 4-tuples over the set {1, . . . , 4}.
Two areas that lie next to each other are called adjacent areas.
As A1 and A4 are adjacent, the indices of the areas in the
area sequence are cyclic, i.e. the area sequence A1, . . . , A4

is glued together at A1 and A4.

Remark 1 For two adjacent areas Ai , Ai+1 of an area
sequence with x ∈ Ai , y ∈ Ai+1, either

sgn( f1(x)) �= sgn( f1(y)) ∧ sgn( f2(x)) = sgn( f2(y)) or

sgn( f1(x)) = sgn( f1(y)) ∧ sgn( f2(x)) �= sgn( f2(y))

holds, i.e. exactly one component flips its sign for two
adjacent areas but not both.

4.3 Area sequence and types of critical points

Definition 7 Let x0 be an isolated first-order critical point
of f defined like above with an area sequence (A1, . . . , A4).
Then for a pair Ai , Ai+1 of adjacent characteristic areas of
the area sequence of x0 (see Fig. 5a), a turning in the charac-
teristic behavior of the vector field can be defined. This turn-
ing can either be a clockwise turning or a counterclockwise
turning as defined in Fig. 5b,c, respectively. Since Fig. 5b,c
contain all 8 possible configurations of pairs of characteristic
areas, only a clockwise or counterclockwise turning behavior
can occur and the list in Fig. 5b,c is complete.

Remark 2 One adjacent pair of characteristic areas already
determines the whole area sequence in terms of its turning
behavior. This is the case because the vector field compo-
nents whose signs flip are alternating in the area sequence.
Thus, an area sequence can either show a clockwise turning
behavior or a counterclockwise turning behavior, but not a
mixture of these and we will also speak of a clockwise or
counterclockwise turning behavior of the area sequence as a
whole—a clockwise or counterclockwise area sequence for
short.

We can use the turning behavior of area sequences around
a critical point to determine its Poincaré index:

Theorem 1 Let f ∈ C1(E) be a vector field like in 4.1 and
let x0 ∈ E be an isolated critical point of f of first order, such
that Df(x0) has full rank. If the area sequence of x0 is coun-
terclockwise, then the Poincaré index of x0 is If (x0) = −1
and x0 is a topological saddle of f . If the area sequence of
x0 is clockwise, then If (x0) = +1 and x0 is a non-saddle
first-order critical point of f .

Proof The area sequence can also be interpreted as a
sequence of four qualitative samples of the vector field val-
ues lying on a piecewise linear closed curve � ⊂ Bε(x0)

that contains x0 (qualitative in the sense that just the signs

Fig. 6 The change of angle of the vector field for two adjacent areas;
since only one component flips sign, the two vectors lie in adjacent
quadrants I–IV and one has |θ | < π

of the vector field components are sampled). We will now
prove that summing up the angle change of the vector field
between these discrete samples and performing this for all
four samples yields the same result as evaluating the continu-
ous integral of the change of angle of f over a continuous Jor-
dan curve Γ̂ around x0, only containing one critical point x0.
Therefore, the Poincaré index of x0 can be computed by just
identifying the sequence of characteristic areas around x0.

Let f̃ be the linearized system of f defined on an ε-ball
around x0. Since for two adjacent areas only the sign of one
component of f changes, the vector at the first sampling point
and the vector at the second sampling point lie in two differ-
ent but adjacent quadrants around x0 (see Fig. 6). As the value
of the linear approximation f̃ changes linearly on Γ between
two sample points and f̃ is continuous, the turning behavior
is uniquely determined by the two sample points; and since
the two sample points lie in adjacent quadrants defined by
the coordinate axes, the vector rotates about an angle θ with
|θ | < π when walking on Γ from one sample point to the
next. Thus, the whole area sequence (for four pairs of areas)
yields the total change in angle 	, with |	| < 4π . As the
area sequence wraps around the critical point, the first and
the last vector of our sample sequence are the same and thus
the change in angle of the vector field has to be 2kπ with
k ∈ Z, see Fig. 5 b, c. As det Df(x0) �= 0, for some ε also
det Df(x) �= 0 for x ∈ Bε(x0), i.e. the vector field is not
constant in a neighborhood of x0 and one has k �= 0. It is
|k| < 2 because |	| < 4π . Thus, only k = ±1 is possible
and the critical point of the linearized field f̃ is of Poincaré
index If̃ (x0) = ±1.

Since for linear systems all critical points of index ±1
have been classified (see Sects. 3.2 and 3.3 as well as Fig. 2),
a critical point can either be a saddle (for If̃ (x0) = −1), if the
area sequence shows a counterclockwise turning behavior, or
a non-saddle (i.e. a source or sink for If̃ (x0) = −1), if the
area sequence shows a clockwise turning behavior. Accord-
ing to the Hartman-Grobman theorem, the Poincaré indices
of first-order isolated critical points are invariant under lin-
earization and f̃ has a saddle in x0 if and only if f has a
topological saddle in x0, which completes the proof of the
theorem. ��
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4.4 Invariant operations on the area sequence

There are 8 possible area sequences as there are four different
areas and each area sequence can be clockwise or counter-
clockwise. Since these sequences yield only two types of
critical points distinguishable by their Poincaré index, it is
desirable to build equivalence classes of area sequences that
yield critical points of the same Poincaré index. These equiv-
alence classes can be directly constructed using elementary
group theory. We refer to the book [11] for a comprehensive
overview of the theory of finite groups.

First it is obvious but nonetheless interesting to observe
that the turning behavior of the area sequence is invariant
under rotation and also invariant under a simultaneous sign
flip of both vector field components. Figure 5 illustrates this:
for example, the first and the last area pair of Fig. 5b,c can
be related through a sign flip, likewise the second and third
area pair.

Rotations and sign flips can be modeled as group opera-
tions. Given a group G and a set X , a (left) group action of G
on X is a mapping ◦ : G × X → X denoted (g, x) �→ g · x
such that e · x = x for all x ∈ X (here e denotes the neutral
element in G) and (gh) · x = g · (h · x) for all g, h ∈ G
and all x ∈ X . The orbit of an element x ∈ X under a group
action of G on X is the set O(x) = {g · x : g ∈ G}. Orbits
of a group action on a set X define equivalence classes on X ,
and the set of all orbits is a partition of X .

The rotation of the area sequence is identical to the opera-
tion of the cyclic group C4 on the indices of the area sequence.
The sign flip can be modeled as the operation of a group iso-
morphic to the symmetric group S2 on the signs of the com-
ponents. From now on, the first group is referred to as the
shape group Gs and the second group as the (sign) flip group
G f . The direct product of Gs and G f is called the coloring
group Gc = Gs × G f .

Now we define the group action of Gc on the set of area
sequences. Let πr : Gc → Gs be the projection of Gc onto
Gs and π f : Gc → G f the projection of Gc onto G f . Fur-
ther, let g ∈ Gc be an element of the coloring group Gc with
its projections πr (g) = s ∈ Gs and π f (g) = f ∈ G f onto
the shape group and the flip group, respectively. Then, g acts
on an area sequence (A1, . . . , A4) as defined below:

g(A1, . . . , A4) := ( f As(1), . . . , f As(4)),

where s is a permutation of the indices {1, . . . , 4} and f a
self-inverse permutation on the set of areas, {1, . . . , 4}. f
can be interpreted as an element that flips the signs of all
components of the vector field: areas of type (+,+) = 1 are
mapped to areas of type (−,−) = 4 and vice versa; an area
of type 2 is interchanged with an area of type 3.

The orbits of this group action on the set of all possible
area sequences yield equivalence classes of area sequences
such that each equivalence class contains all area sequences

that can be mapped onto each other by rotations and sign
flips.

4.5 Interpolated vector fields

Typical vector field data is given on a grid. Therefore, the vec-
tor field needs to be interpolated to obtain values at non-grid
points. Local (i.e. cell-wise) interpolation schemes are often
chosen for the sake of simplicity and speed. In the following
two sections, we will have a closer look at two interpolation
schemes: barycentric interpolation on triangles and bilinear
interpolation on rectangles.

Both interpolation schemes share some important proper-
ties. On the one hand, inside cells, both interpolation schemes
are of class C∞ and thus linearizable. On the other hand, they
are defined locally or in a piecewise way: a different interpo-
lant is used for each cell. The interpolation is only of class C0

across cell boundaries and it is linear and continuous along
cell boundaries. Basic concepts and tools are developed for
the simpler case of the barycentric interpolant. Then, these
tools are adapted and extended for bilinear interpolation.

Note that the case of linear interpolation on triangular
meshes can equally efficiently be solved by calculating the
rotation along each triangle directly. As there can either be
no or exactly one critical point of Poincaré index ±1 inside
each cell, a cell with zero rotation has no critical point on its
inside, whereas a nonzero rotation implies that there is a crit-
ical point inside the cell and already determines its Poincaré
index. None the less we will describe the barycentric setting
in the following as the notions introduced there will also be
used in the more subtle case of the bilinear interpolant.

5 Barycentric case

A d-simplex s on d + 1 vertices offers a natural way for
the linear interpolation via barycentric coordinates. For the
following, we will again restrict the dimension to d = 2,
where a simplex is identical with a triangle.

5.1 Cells

From now, a cell T denotes a triangle with vertices x1, x2,
x3 ∈ R

2 and with one real 2D vector (from the vector field)
attached to each vertex such that a cell becomes a 3-tuple
T = ((x1, v1), (x2, v2), (x3, v3)) ⊂ (R2 × R

2)3. Most of
the time, we are only interested in the vector field values and
not the position of the vertices, just writing T = (v1, v2, v3).
The vector field inside a cell T will be written f : |T | → R

2,
when |T | ⊂ R

2 is the set of convex combinations of the
vectors x1, x2, x3. Further, let f = ( f1, f2)

T . We restrict the
vector field values on the vertices to be non-zero such that
the interpolated vector field has isolated singularities only.
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5.2 Sector sequences and level sets of the interpolant

The vector field is interpolated component-wise inside the
cell using barycentric coordinates. The interpolation is lin-
ear, and the interpolant is continuous in the cell and on its
boundaries.

Definition 8 Given the cell T , let us look only at one com-
ponent of f , say f1 ( f2). If two adjacent vertices (i.e. two
endpoints of an edge of the cell) have values of f1 ( f2) such
that one value is smaller than ω and the other one bigger than
ω, then by virtue of continuity and linearity of the interpo-
lant on cell edges there exists exactly one point on the edge
with an f1-value ( f2-value) of ω. Such an edge is called an
ω-active edge for f1 ( f2). If the two values are both smaller
or bigger than ω, there exists no such point and the edge is
called an ω-inactive edge for f1 ( f2).

Remark 3 We can now observe the following:

1) For one cell, there exist at most two ω-active edges for
each component and, thus, at most two points on the cell
boundary with value ω for each component if all vertex
values of each component differ from ω.

2) Since a critical point of the interpolated vector field can
only occur in a crossing point of the 0-level sets of the
components of the vector field, a cell with an interior crit-
ical point requires two active edges per component. Fur-
thermore, there can at most be one critical point inside a
cell because the 0-level sets of the interpolant are straight
lines.

3) Since there can only be one critical point inside a cell,
the sector sequence around a critical point can be found
by looking for intersections of the 0-level sets of the
components with the cell boundary. Each active edge
yields exactly one 0-value point on a boundary edge, the
position of which can be obtained through linear inter-
polation between adjacent vertices.

If one collects the sequence of 0-value points of the compo-
nents while traversing the boundary of the cell (as shown in
Fig. 7), one can not only construct the area sequence but also
determine whether the 0-level sets cross and thus whether
there is a critical point of the interpolated vector field. Let a
denote a 0-value point of the first component and let b denote
a 0-value point of the second component of the vector field.
Then, for the sequences aabb, bbaa, abba, or baab, the cell
does not contain a critical point, whereas for the sequences
abab and baba, there is a critical point. These

(4
2

) = 6 inter-
section sequences are all possible sequences for the bary-
centric interpolant because there can be at most two 0-value
points for each component on the boundary of the cell.

The sequence of the crossings of the 0-level sets of the
components together with the information of how the signs

of the components change defines the sequence of character-
istic areas around a critical point and thus its Poincaré index
as we have shown in Sect. 4.3. We will make use of this in
the following section.

5.3 An edge-coloring problem

Before we can classify critical points, a suitable data struc-
ture for describing the area sequence around a critical point
is needed. Just looking at the sign configuration of the com-
ponents in the vertices (which can be seen as a coloring of the
vertices) does not allow us to distinguish the types of critical
points because the area sequence is not fully determined just
by the signs of the components in the vertices (see Fig. 8).

We use an edge-based data structure to uniquely describe
the sequence of 0-values of the vector field components on
the boundary of the cell and the area sequence: each cell
edge is given two slots that can be filled with 0-value points
of the components (see Fig. 7). The slots represent the order
of the two components’ zero values while walking around the
boundary of a cell. The slots also indicate whether a compo-
nent changes from positive to negative or from negative to
positive values as it passes through a 0-value point. There is
no more than one 0-value for each component along a bound-
ary edge of a cell because of the linearity of the interpolation
along cell edges. Hence each edge can be given two slots and
13 types of boundary edges can occur, as listed in Table 1.
The notation ( f1 : + → −, f2 : − → +) denotes that f1

changes from a positive value to a negative value, f2 changes
from a negative value to a positive value, and the sign change
of f1 occurs before the sign change of f2 as one traverses

Fig. 7 Triangle cell data structure with two edge slots on each edge.
An edge slot is identified with a possible 0-value point of one of the
vector field components. Si j refers to the j-th slot of edge i

(a) (b)

Fig. 8 Different types of critical points for the same vertex sign config-
uration: a saddle with area sequence (++,+−,−−,−+), b attracting
node with area sequence (++,−+,−−,+−)
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Table 1 The thirteen edge colorings

Edge type 0-values of components

ξ1 No 0-value, neither for f1 nor for f2

ξ2 ( f1 : + → −)

ξ3 ( f1 : − → +)

ξ4 ( f2 : + → −)

ξ5 ( f2 : − → +)

ξ6 ( f1 : + → −, f2 : + → −)

ξ7 ( f1 : + → −, f2 : − → +)

ξ8 ( f1 : − → +, f2 : + → −)

ξ9 ( f1 : − → +, f2 : − → +)

ξ10 ( f2 : + → −, f1 : + → −)

ξ11 ( f2 : + → −, f1 : − → +)

ξ12 ( f2 : − → +, f1 : + → −)

ξ13 ( f2 : − → +, f1 : − → +)

the edge on the cell boundary in clockwise direction. If a
component is not listed, it indicates that this component has
no sign change on that edge and thus no 0-value.

For a triangle cell, each of the three edges can now be of
types ξ1–ξ13, which represent a coloring of the triangle edges
with 13 colors. Therefore, such an edge-coloring can be seen
as an ordered 3-tuple over the set of the 13 colors. Note that
not every possible 3-tuple over the set of colors is a valid
coloring as there exist the following types of invalid color-
ings, i.e. colorings that are not (or not uniquely) mappable to
a sign configuration of the vector field at the cell vertices:

1) Colorings that have an invalid number of active edges:
For each component, the cell has to have at least two
active edges and the number of active edges has to be
even.
Example: the coloring (ξ2, ξ4, ξ1) would have one active
edge for both f1 and f2 and would thus be an invalid
coloring.

2) Colorings that are not mappable to a sign configuration
of the vector field in the cell vertices at all.
Example: a component, say f1, cannot change from
+ to − twice in a row. Thus, for example, a coloring
(ξ2, ξ2, ξ2) would be invalid.

Each valid coloring of a triangle can by construction be
uniquely mapped to a sign configuration of the values of the
vector field components on the vertices (see Fig. 11). How-
ever, the edge-coloring of a triangle carries more information
than just the sign configuration of the vector field components
on the vertices (namely a unique description of the intersec-
tion topology of the 0-level sets with the cell boundaries)
such that several colorings of the triangle may be mapped to
the same sign configuration.

5.4 Classification

As discussed in Sect. 4.4, there are certain operations that
leave the clockwise and counterclockwise turning behavior
of the area sequence invariant. These operations can be mod-
eled as a group action of a certain group on the set of area
sequences.

Since there exists a bijective map from the set of edge-
colorings of a cell T to the set of area sequences (each color-
ing describes exactly one area sequence), one can make use
of the ideas presented in Sect. 4.4 to construct equivalence
classes of cell colorings yielding the same area sequence.
Then, all possible edge colorings of a cell can be constructed
and classified by using a group action that builds equivalence
classes of equivalent colorings. Colorings related by rotation
or color flip thus yield the same type of critical point.

Theorem 2 Every configuration of a cell T (as a coloring of
the cell) that results in an intersection of the level sets of the
two components inside of T and thus contains a critical point
is topologically equivalent to one of 8 representative config-
urations of which four contain a saddle first-order critical
point (Poincaré index −1) and four contain a non-saddle
first-order critical point (Poincaré index +1). Representa-
tives for the 8 orbits are listed in Table 2 and visualized
(Online Resource 1). Colorings that are not included in this
list do not contain a critical point.

Proof This theorem is proven using a GAP program, see
(Online Resource 3).

The basic idea is as follows. Using a combinatoric descrip-
tion, all possible colorings of a cell are constructed: the set
of all ordered 3-tuples over the set of all possible colors.
Then, a group action on that set is considered to build equiv-
alence classes of colorings such that all pairs of elements of
an equivalence class can be mapped onto each other by means
of operations leaving the type of critical point invariant, as
described in Sect. 4.4.

Table 2 Representatives of the 8 equivalence classes of colorings of a
triangle cell

Class Cell coloring Index

1 (1, 6, 9) −1

2 (1, 7, 8) +1

3 (1, 10, 13) +1

4 (1, 11, 12) −1

5 (2, 4, 9) −1

6 (2, 5, 8) +1

7 (2, 11, 5) −1

8 (2, 13, 4) +1
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Let C = {ξ1, . . . , ξ13} be the set of colors as described
above and let the set of 3-tuples over C , T = {t =
(t1, . . . , t3) : ti ∈ C } be the set of colored cells or tiles.
For the coloring group Gc, which is the direct product of
the shape group Gs and the flip group G f (see Sect. 4.4),
an action of Gc on the set of all colored tiles T can be
defined. Here, the shape group Gs is the cyclic group C3

as the subgroup of rotations of the symmetry group of
the combinatoric triangle (which is given by the symmet-
ric group S3). The color flip group is chosen to be G f =
〈(2, 3)(4, 5)(6, 9)(7, 8)(10, 13)(11, 12)〉, which is isomor-
phic to S2; the numbers in the cycles correspond to the color
indices of edge colors. The choice of generator for G f is
obvious and unique since simultaneous flipping of signs of
the two components results in an interchange of edges with
color ξ2 and ξ3, ξ4 and ξ5, etc.

Using our GAP program, first all possible colorings of
a cell are generated and for each orbit a representative is
checked for the validity of the coloring. Elimination of inval-
idly colored cells can be done on a representative level: if the
representative of an orbit is an invalid coloring, all other ele-
ments in the orbit are invalid because they are equivalent
colorings. Thus, one can talk of invalidly colored orbits.

After discarding all invalidly colored orbits, for the
remaining orbits the sequence of 0-value points of the com-
ponents on the cell boundary is extracted from the coloring.
Since the 0-level sets of the components are straight lines,
the sequence of 0-value points determine whether the 0-level
sets intersect within the cell (thus yielding a critical point) or
not (no critical point). If the 0-level sets intersect within the
cell, the area sequence and its turning behavior are extracted
to classify the type of critical point as saddle (Poincaré index
−1) or non-saddle (Poincaré index +1). As all critical points
are of first-order, this classification by the Poincaré index
covers all possible types of critical points. Since all possi-
ble colorings have been considered the list of equivalence
classes is complete. See (Online Resource 1) for a list of all
equivalence classes, including sample visualizations. ��

6 Bilinear case

In this section, the concepts developed in the previous sec-
tion are transferred to the bilinear case. Most elements can
be immediately adopted, but some caution has to be taken
because the interpolant is no longer linear.

6.1 Interpolation scheme and cells

Bilinear interpolation is an extension of linear interpolation
for interpolating functions of two variables. This interpola-
tion scheme is simple, fast to implement, and widely used in

many visualization algorithms working in a cell-wise fashion
on uniform, rectilinear, or curvilinear 2D grids.

A cell Q is represented by an ordered 4-tuple on the points
x1, . . . , x4 ∈ R

2 with one real-valued 2D vector (the vector
field values) attached to each vertex such that a cell becomes a
4-tuple Q = ((x1, v1), . . . , (x4, v4)) ⊂ (R2 ×R

2)4. Mostly,
we are only interested in the vector field values, just writing
Q = (v1, . . . , v4).

Any uniform, rectilinear, or convex curvilinear cell can be
transformed to the unit square [0, 1]2 in terms of a diffeo-
morphism, yielding local Euclidean coordinates s, t ∈ [0, 1]
within the cell. Without loss of generality we therefore only
consider the case of Euclidean coordinates in the following,
i.e. the setting when the interpolation scheme is employed in
parameter space. We use the following notation for bilinear
interpolation:

Let Bi : [0, 1] × [0, 1] → R, i = 1, 2, be bilinear func-
tions for the two vector components (corresponding to x
and y), defined by

Bi (s, t) := (1 − s, s)

[
v1i v2i

v3i v4i

] (
1 − t

t

)
,

where s, t ∈ [0, 1] ⊂ R are local coordinates within one cell
and v1 = (v11, v12)

T ,…,v4 = (v41, v42)
T are the values of

the vector field components at the four vertices x1, . . . , x4.
Then B = (B1, B2)

T is called the bilinear interpolant of
v1, . . . , v4.

Remark 4 The bilinear functions can be rewritten as

Bi (s, t) = ai s + bi t + ci st + di , (3)

with ai = (v3i − v1i ), bi = (v2i − v1i ),
ci = (v1i − v2i − v3i + v4i ) and di = v1i .

The following properties of the interpolant will be of
importance throughout the rest of the section:

1. The ω-level sets of Bi are hyperbolas, which can be seen
when writing the interpolants in standard form (3) and
interpreting them as conic sections. Some examples of
ω-level sets of Bi are depicted in Fig. 9.

2. The interpolation is linear in each dimension and con-
tinuous. Furthermore, the interpolation along edges of
the cell is linear: analogously to the barycentric case in
Sect. 5, one can define ω-active and ω-inactive cell edges.
There exist four points on a cell boundary with value ω

and thus most four ω-active edges, if all vertex values
differ from ω.

3. In the case ci = 0, Bi (s, t) is a linear function. If
ci �= 0, Bi (s, t) is nonlinear and when looking at the par-
tial derivatives ∂

∂s Bi (s, t) = ci t + ai and ∂
∂t Bi (s, t) =

ci s + bi , one sees that Bi (s, t) has an extremal point at

Si

(
− bi

ci

∣∣∣ − ai
ci

)
. This extremal point is a saddle because

the Jacobian DBi is singular at Si and for all s, t ∈ R the
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Fig. 9 Examples of the four qualitatively distinct configurations of 0-
level sets of bilinearly interpolated scalar fields: (i) inactive cell, (ii)
single active cell, (iii) couple active cell, (iv) saddle cell. Bounding
boxes (see Lemma 2) are shown in gray

Hessian Hi of Bi has a negative determinant (and thus
its eigenvalues are of opposite sign; see Figs. 9 and 12
for examples).

6.2 Bilinear interpolation of scalar fields

Let us look at the qualitative behavior of a bilinearly inter-
polated scalar fields before extending this to vector fields.
We only consider one Bi here, say B1, as a placeholder for a
scalar field. The qualitative behavior of the interpolant within
the cell can be described in terms of its vertex configuration:

Theorem 3 Given ω ∈ R and a cell Q with vertex values
v11, v21, v31 and v41, vi1 �= ω for 1 ≤ i ≤ 4, four cases
for the qualitative behavior of ω-level sets of the interpolant
B1(s, t) within a cell can occur: Fig. 9 summarizes these
cases that depend on the classification of vertex values vi1

being greater or less than ω. Here, active and inactive edges
for a cell Q are defined in the same way as for the barycentric
interpolant in Definition 8. Please note that we use the termi-
nology saddle cell (see Fig. 9) to describe a configuration of
vertex values vi1, which is different from the classification of
a critical point as a saddle point. In the following, we denote
the first always by the compound term saddle cell.

All of the statements follow immediately from the conti-
nuity of the interpolant and its linearity along cell boundaries.

Remark 5 For an easier notation of the different cell types
in terms of the definitions of Theorem 3, we write a cell
Q = (v1, v2, v3, v4) as a 4-tuple over the set {+,−} where
the i-th entry of that tuple is set to + if vi > ω and to −
otherwise. Table 3 summarizes this tuple notation, referred
to as vertex sign configuration, as in the barycentric case.

Lemma 2 (Bounding-box lemma) Let Bi (s, t) be a bilin-
ear interpolant on a rectangular grid cell Q and let the cell
be 0-active. For each curve of the 0-level set connecting two
0-value points A(Ax |Ay), B(Bx |By) on the boundary of the
cell, the Cartesian product

L = [min{Ax , Bx }, max{Ax , Bx }]
×[min{Ay, By}, max{Ay, By}]

defines a bounding box: the curve of the 0-level set of Bi is
inside L except at the 0-value points at the border of the cell.
See Fig. 9 for an illustration of the set L for some sample
configurations.

Proof We only give a sketch of the proof. The basic idea is
the following.

Let the bounding box L be given as the convex hull of the
four points

P1(min{Ax , Bx }| min{Ay, By}),
P2(min{Ax , Bx }| max{Ay, By}),
P3(max{Ax , Bx }| max{Ay, By}),
P4(max{Ax , Bx }| min{Ay, By}).
Note that A, B ∈ L . Then, the bilinear interpolant Bi (s, t)
restricted to the bounding box L can be expressed in terms of
another bilinear interpolant B̂i (ŝ, t̂) defined on L and inter-
polating the values of the points P1, . . . , P4. To leave L , a
0-isoline of B̂i has to cross the boundary of L . Thus, a cross-
ing 0-isoline can only occur where the value of B̂i on the
boundary of L is 0. One can then show that apart from the
two 0-values in the corner points A and B of a L , there exist
no other boundary points of L with 0-value. Therefore, such
a crossing cannot occur and the 0-level set of B̂i completely
lies inside L and cannot leave L .

Since the interpolation function B̂i along the boundary of
L is continuous and linear, it is sufficient to show that only
two points in the set L have 0-value. It then follows imme-
diately that these are the only points on the boundary with
zero value. This can be shown easily for a representative of
each of the cases listed in Theorem 3 and Fig. 9. ��

6.3 Analytical computation of the position of critical points

The position of critical points of the bilinear interpolant B =
(B1, B2) can be computed as intersection points of 0-level
sets of B1 and B2 by solving

B(s, t) =
(

B1(s, t)
B2(s, t)

)
=

(
a1s + b1t + c1st + d1

a2s + b2t + c2st + d2

)
= 0.

(4)

Since both B1(s, t) = 0 and B2(s, t) = 0 are linear or qua-
dratic equations in s, t , the system can either be combined
into a single linear or quadratic equation in s or t . We will
refer to this equation as the intersection equation. Since the
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Table 3 Different cell types by vertex sign configuration

Cell type Vertex sign configuration

Inactive (−,−,−,−), (+,+,+,+)

Single active (−,−,−,+), (+,−,−,−), (+,+,+,−), (−,+,−,−), (−,−,+,−), (−,+,+,+), (+,−,+,+), (+,+,−,+)

Double active (−,−,+,+), (+,−,−,+), (+,+,−,−), (−,+,+,−)

Saddle cell (−,+,−,+), (+,−,+,−)

(a) (b) (c)

Fig. 10 Intersection cases for the 0-level sets (red and green lines) of
the two vector field components: a no intersection with Δ < 0, b one
touching point C with Δ = 0, and c two intersection points C1 and C2
with Δ > 0. The saddle points Si (i = 1, 2) of the two interpolants Bi
and their asymptotes (dashed lines) are depicted in red for B1 and green
for B2

linear case occurring here can be treated in exactly the same
way as the barycentric case described in Sect. 5, this degen-
erate case will be excluded in the following and we will only
speak of the (quadratic) intersection equation with discrimi-
nant Δ. The equation can either have no real solution (Δ <

0), two different real solutions (Δ > 0), or a double real solu-
tion (Δ = 0), and the number of solutions of the intersection
equation gives the number of critical points, see Fig. 10.

Since the sign of the discriminant Δ determines whether
the vector field has no, one, or two critical points, it can be
interpreted as a bifurcation parameter of a dynamical sys-
tem, where Δ = 0 is the bifurcation value. Also Δ can be
interpreted as a measure for the stability of the critical point—
critical points with Δ = 0 are generally not stable, whereas
the case with two (Δ > 0) or no intersection points (Δ < 0)
can be more or less stable according to the magnitude of |Δ|.

Given a rectangular cell with the vector field values
v1, . . . , v4 one can write the components of the bilinear
interpolant in normal form like done in (4) (see Remark 4).

The intersection points of the 0-level sets of the compo-
nents are obtained by solving (4). First, we determine which
of the interpolants is linear in s and t (i.e. for which ci = 0);
if both are linear, (4) becomes a linear system and can be
solved separately yielding one or no solution (and not infi-
nitely many solutions as the singularities are restricted to be
isolated). If one of the interpolants is linear and the other
nonlinear, the linear one can be solved for s or t and this can
be plugged into the other to yield a quadratic equation in s
or t . If both interpolants are nonlinear, one can be solved for
s or t and plugged into the other.

All these equations have at most two real solutions yield-
ing one coordinate of the 0-value points of the interpolated
vector field. The other coordinate can be obtained through
the linear or quadratic equation between s and t from the
first step. A solution within the cell is found by restricting
the coordinates to be in [0, 1]2. Note that the vector field val-
ues for each component are always restricted to be nonzero
at cell vertices and that the two components are assumed not
to be exactly the same.

6.4 Level sets and sector sequences

Each solution of (4) lies in the intersection set of the 0-level
sets of B1 and B2. The following cases can occur when look-
ing at the intersections of level sets of B1 and B2:

Theorem 4 Let c1, c2 be the 0-level sets of B1, B2 and let

 ∈ R be the discriminant of the intersection equation for a
cell Q. Then, the following cases can occur:

1. Δ < 0 ⇔ c1, c2 are disjoint and there is no critical
point (see Fig. 10a),

2. Δ = 0 ⇔ c1, c2 touch in one point (see Fig. 10b),
3. Δ > 0 ⇔ c1, c2 intersect in two points (see Fig. 10c).

Proof Clearly one has: c1 and c2 are disjoint ⇔ Δ< 0
which proves 1). The same holds for 2). Now it remains to
show 2), i.e. that c1 and c2 cannot touch twice and that the
intersection equation has a double solution iff c1 and c2 touch
in one point.

Suppose that c1 and c2 touch in one point as shown in
Fig. 10b. A small perturbation of the vector field values now
either results in a case where the hyperbola branches do not
intersect (i.e. Δ < 0) as shown in Fig. 10a, or it yields a
case where c1 and c2 intersect in two points, i.e. where the
intersection equation has two different solutions as shown in
Fig. 10c. As each pair of branches can be perturbed sepa-
rately a double touching case cannot exist as this could be
perturbed to yield a triple intersection of the branches which
is a contradiction to the maximum number of real solutions
of the intersection equation. This proves 3). ��
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6.5 Critical points and area sequences

Let us now look at the types of critical points yielded for the
different intersection cases for the 0-level sets of the compo-
nents as investigated in Theorem 4.

1) The case Δ < 0, where the 0-level sets do not intersect,
is trivial.

2) For the case Δ > 0, when the 0-level sets of the com-
ponents intersect twice, yielding two first-order isolated
critical points of the interpolated vector field of first order
as none of the directional derivatives is 0 in the intersec-
tion points. For each critical point separately, the same
things hold as for critical points in the barycentric case; in
particular we can look at area sequences, turning behav-
ior of those, etc. for each critical point separately.

Remark 6 The area sequences of the two critical points
always share three characteristic areas and these are traversed
in opposite directions for each of the points (i.e. clockwise
turning for an area pair becomes a counterclockwise turning
and vice versa). Therefore, one of the two points has a Poin-
caré index of −1 and the other one has a Poincaré index of
+1. Another way to see this is the fact that to first observe
that there are at most two critical points inside a cell and that
the Poincaré index of a cell can either be −1, 0 or +1. Now,
by virtue of the summation theorem for the Poincaré index,
two critical points inside a cell of the same index would force
the cell to have an index of ±2, a contradiction.

3) For the touching case (Δ = 0) of the 0-level sets,
the tools developed in the previous sections cannot be
applied: when linearizing the field around the touching
point, the 0-level sets of the two components are tangen-
tial to each other and the Jacobian has at least one zero
eigenvalue. Thus, the critical point is not of first-order
and a well-defined area sequence does not exist for this
case. However, a perturbation of the field yields two crit-
ical points, one of index +1 and one of index −1. Then,
Poincaré index theory states that the one critical point
yielded by the touching of the 0-level sets has an index
equal to the sum of the indices of the two critical points
it splits into, i.e. the second-order critical point from a
touching of the 0-level sets has index 0.

6.6 Edge coloring and invariant operations on the colorings

As the bilinear interpolant is linear along the cell edges, one
can employ the same ideas as in the barycentric case in order
to determine existence and types of critical points inside a
cell, again using an edge-based “slot” data structure. Using
a data structure with two slots for each edge of a cell, one
can see this as a cell coloring problem with a coloring of a

cell represented as a 4-tuple over the set of 13 colors like
described in Sect. 5.3.

Investigating the intersection topology of the 0-level sets
becomes more complicated because the 0-level sets are no
longer straight lines. Using the same notation as for the bary-
centric case, a sequence of 0-value points aabb (where again
a stands for a 0-value point of the first component of the vec-
tor field and b for a 0-value of the second component) not
necessarily has no intersections. Here, it can either yield a
case where the isolines have no point in common, touch in
one point, or intersect twice as shown in Fig. 1.

The question is whether for a sequence of 0-value points
of the form . . . aa . . . or . . . bb . . . the subsequence aa or bb
can yield a touching or intersection of the 0-level sets or not.
If not, the part aa or bb of the sequence is irrelevant for the
intersection topology and can be “collapsed”, e.g. a sequence
baababab for which aa cannot yield a touching of the iso-
lines could be reduced to bbabab. If now bb would yield
no intersection we could reduce once more to yield abab, a
sequence which cannot be collapsed any more.

For a fully reduced sequence, we can either determine the
number of crossings and thus critical points inside the cell as
done in the barycentric case (for sequences of the form (ab)n ,
n ∈ N0) or we know that the case is value-dependent, i.e. the
number of intersections of the isolines cannot be determined
just by looking at the topology of the 0-value points on the
boundary of the cell. The latter is the case when the fully
reduced sequence contains a subsequence aa or bb.

The question remains: how can one determine which sub-
sequences of type aa or bb can be collapsed? Let us first focus
on non-saddle cells. The bounding box lemma (Lemma 2)
gives us valuable information for the case of single or double
active cells. It states that cases aabb with single active cells
for both components lying at opposite vertices of one edge
cannot intersect, whereas all other configurations with single
and double active cells for the two components—although
having no intersection in the topology of 0-value points on
the boundary—can be perturbed to yield a touching or an
intersection of the isolines and thus are value-dependent.

6.7 Saddle cells

There are several subtleties that have to be considered when
dealing with saddle cells. For one or both components of the
vector field, both branches of the 0-level sets intersect with
the cell. The topology of the 0-level sets inside the cell is
not uniquely determined by the sequence of 0-value points
of the components on the cell boundary. This ambiguity can
be resolved by adopting the asymptotic decider [17].

To determine the intersection topology for the 0-level-
sets inside the cell, one can sort the 0-value points by their
local coordinates inside the cell in ascending (or descending)
order. Then, for each component, the first and second and the
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(a) (b) (c)

Fig. 11 Hierarchy of data structures to describe the sequence of 0-
value points on the cell boundary from fine to coarse: a double-edge
data structure consisting of two double edges with four slots, which can
be projected via π1 to b the edge data structure consisting of four edges
with two slots each that can finally be projected via π2 to c the vertex
sign configuration of the components

third and fourth point in the sorted sequence of 0-value points
belong pairwise to the same branch of the 0-level set.

To model this behavior, the previously used edge-based
data structure is insufficient because the asymptotes imply a
“linking” of two opposite edges of a cell. Therefore, the data
structure needs to be extended to describe the position of the
0-value points in the sequence sorted by local coordinates. A
natural choice for this is a double-edge data structure shown
in Fig. 11a, which describes a cell by a pair of double edges
with four slots for each edge. When filling the slots with
0-value points of the components, their position in the sorted
sequence for each coordinate is the index in the respective
double edge if one arranges the slots as in Fig. 11a.

Each valid double-edge configuration can be uniquely
mapped to a valid edge coloring configuration via a natu-
ral projection π1 (every valid double-edge configuration can
be uniquely mapped to a edge coloring of a cell), which in
turn can be mapped to a vertex sign configuration via a natu-
ral projection π2 (every valid edge coloring can be uniquely
mapped to a vertex sign configuration of a cell), as described
before for the barycentric case. Figure 11 illustrates all three
levels of representation.

Using the double-edge data structure, one can now con-
struct all possible double-edge configurations for the case
of a saddle cell and check for the intersection topology of
the 0-level sets of the interpolant. As we will see in the fol-
lowing, the asymptotic decider plays no role in the types of
critical points yielded inside a cell, i.e. there is no need to pay
attention to how the 0-value point sequence is reduced when
determining the intersection topology and area sequence for
saddle cells.

An open question is how the 0-value sequence can be
reduced in a valid way as it was done for non-saddle cells
before. The tools provided by the bounding box lemma (Lem-
ma 2) and Theorem 4 are instrumental here. Figure 12 shows
models of the two cases that contain reducible subsequences
of type aa or bb in their sequences of 0-value points on the
boundary. All other configurations can yield a touching or
double intersection of the branches for the same boundary

(a) (b)

Fig. 12 Examples of topologies of 0-value points of the components
on the boundaries that can be reduced: a baababba, which can be
reduced by collapsing the branch in the top right which cannot touch
or intersect with other branches (bounding box lemma) to bbabba, b
abababba, which can be reduced to abab as the two branches in the
top left cannot touch or intersect with others (bounding box lemma) or
themselves (Theorem 4). Again, the saddle points Si (i = 1, 2) of the
two interpolants Bi and their asymptotes (dashed lines) are depicted in
red for B1 and green for B2

topology and thus are value-dependent (by virtue of Lem-
ma 2 and Theorem 4).

Now that we have the tools to construct and reduce
0-value point sequences for cells with bilinear interpolants,
let us proceed in the same way as we did for the barycentric
case, classifying all cell colorings in terms of the types of
critical points they (may) yield inside the cell.

6.8 Classification

Theorem 5 Every configuration of a cell Q (as a coloring
of the cell) that yields an intersection or touching of the level
sets of the two components inside of Q is topologically equiv-
alent to one of 74 representative configurations, see (Online
Resource 2) for a complete list:

– 38 configurations have exactly one first-order critical
point, the index of which is ±1 and which is determined
by the sequence of characteristic areas on the boundary
of the cell.

– 4 configurations have two critical points, one of which is
a saddle (i.e. index −1) and the other a non-saddle (i.e.
index +1). Both critical points are stable. See Figure 13
for visualizations of two sample cases.

– 32 configurations are value-dependent, i.e. they have
either no, one, or two critical points. The case of a sin-
gle critical point is an unstable bifurcation point of the
underlying dynamical system.

Colorings that are not included in this list cannot have a
critical point inside the cell.

Proof The proof is analogous to the proof of Theorem 2. The
corresponding GAP program performs the following steps.
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Fig. 13 Two example visualizations of vector fields for which the
0-value sequence on the cell boundary cannot be reduced, yielding two
critical points inside the cell

1) Create all possible cell colorings with the 13 colors and
use a group action of the coloring group Gc = Gs ×
G f given by the direct product of the shape group Gs

and the flip group G f on the set of all colored cells to
obtain equivalence classes of colored cells (that contain
the same number and types of critical points). The flip
group only depends on the colors and as these have not
changed it can be chosen as in the proof of Theorem 2.
The shape group Gs is chosen as the cyclic group C4 of
the rotations of a cell by π

2 as a subgroup of the full sym-
metry group of the square, which is the dihedral group
D8 of order 8.

2) Examine the representatives of the orbits: sort out invalid
colorings as in the proof of Theorem 2 and determine the
intersection topology and the reduced 0-value sequence
of the 0-level sets of the two components using the prop-
erties described in the preceding sections. This yields an
area sequence that can be used to determine the num-
ber and types of critical points inside the cell. Here, four
classes of configurations are distinguished: cases with
exactly one critical point, cases with exactly two criti-
cal points, cases that are value-dependent, and cases that
yield saddle cells for any component.

3) Determine the turning behavior of the reduced area
sequence and thus the type of critical point for configu-
rations with exactly one critical point. Value-dependent
and double intersection cases need no further treatment
as the number and types of the critical points are not fully
determined by the area sequence.

4) For saddle cells: construct all possible double-edge con-
figurations and the reduced 0-value sequence for each
configuration yielding an area sequence.

As it turns out, for saddle cells all double-edge configu-
rations yield the same number and the same types of critical
points such that the asymptotic decider indeed does not influ-
ence the types of critical points inside a cell as claimed in
Sect. 6.7. For the other cases, the number of equivalence clas-
ses given in the theorem arise. A full list of cases, including
example diagrams, is provided in (Online Resource 2). ��

7 Boundary points and closed streamlines

So far the issue of critical points on cell boundaries has not
been addressed and is somewhat delicate because the inter-
polation scheme is only C0 across cell boundaries for both
the barycentric and the bilinear cases.

To resolve this issue, we employ a cell clustering as
described by Tricoche et al. [29]: the current cell with a
critical point at the cell boundary and its neighboring cell
sharing the edge with the critical point are clustered into a
super cell, see Fig. 14. This process is iterated as long as
there are critical points on the cell (or super cell) boundary.
Then, a new (artificial) critical point C ′ is positioned inside
the super cell at a position given by the averaged positions
of the critical points inside the super cell. This new critical
point C ′ can be of arbitrary order and complexity. In order
to determine the topology of the vector field inside the super
cell, the super cell is triangulated with a new inner vertex
at the position of C ′. Subsequently, a piecewise linear vec-
tor field is constructed inside the super cell as the union of
the barycentrically interpolated vector fields on the triangles,
using the information from the boundary of the super cell.

As the direction of the new vector field does not change on
rays emerging from C ′, hyperbolic sectors around C ′ can
be identified by looking at the configuration of the vector
field on the boundary of the super cell. After identification of
the boundaries of hyperbolic sectors, the separatrices can be
traced beginning from the super cell boundary in the usual
way. Figure 15 shows how the different sector types around
the critical point C ′ can be determined by using a sequence
of orientations of the vector field in relation to the position
vector on the boundary of the super cell with respect to the
origin C ′. We refer to [29] for details of the method. This is a
local method that does not alter the vector field behavior out-
side the super cell; thus, it is a robust and simple way to deal
with critical points on cell boundaries. Note that the data of
the randomly generated test vector fields as shown in Table 4
suggest that boundary critical points occur extremely seldom

Fig. 14 Forming a super cell consisting of the quadrangular cells Q1
and Q2 for a case where a critical point C lies on the cell boundary of
Q1 and Q2. The super cell is then triangulated by T1, . . . , T6 and the
vector field (shown in gray) is interpolated barycentrically inside each
triangle Ti
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Fig. 15 Possible configurations of the orientation of the vector field in
relation to the position vector with respect to the origin C ′. P denotes
a parallel configuration, O an orthogonal one. The appended signs +
and − distinguish the two possible directions of the vector field w.r.t.
the position vector in each case

such that the additional steps needed by the algorithm in that
case are negligible regarding its speed.

Another problem not addressed so far is the task of find-
ing limit cycles of vector fields. Since this problem has been
addressed in various publications already (see [28,30]) and
the methods presented there can be incorporated in our algo-
rithm, we will not deal with this case here.

8 Algorithm

The algorithm consists of three main stages. First, all cells
that may contain critical points are identified. Then, these
cells are examined more thoroughly to check whether they
contain one or more critical points and whether cell clustering

is needed. This step is performed by computing the coloring
of the cell and using a lookup table to determine the class of
the cell coloring as defined in Theorems 2 and 5. Finally, the
positions of the critical points inside the cells are computed
analytically. For non-saddles, the type can either be classi-
fied using the Jacobian at that point or the sector-based idea
described in [29], which is also used to determine the types
of higher-order critical points. Note that the exact type of
first-order non-saddles is not required to build the topologi-
cal skeleton, which is only based on trajectories originating
from hyperbolic sectors.

8.1 Generic algorithmic skeleton

1. Traverse cells, mark cells that have at least two active
edges for each component by looking at the sign config-
uration of the vector field at the vertices.

2. Compute cell colorings of the marked cells and fetch
the configuration class for each cell in the lookup table;
a perfect hash function can be used for this. Deal with
critical points on the boundary of the cell using the cell-
clustering approach as described in Sect. 7.

3. Compute the location(s) of the critical point(s) inside the
cell. For the barycentric case, a linear system is solved.
For the bilinear case, one can write the interpolant for
each component in normal form Bi (s, t) = ai s + bi t +
ci st + di and combine the two equations into the linear

Table 4 Occurrences of critical points in test data sets

Class Random field Ocean flow Air flow Torus

Absolute Relative Absolute Relative Absolute Relative Absolute Relative

Overall

Topology-dependent 6,28,87,918 0.629 11,089 0.990 9,972 0.997 2,492 0.997

Value-dependent 3,71,12,082 0.371 111 0.010 28 0.003 8 0.003

Boundary point 0 0.000 0 0.000 0 0.000 0 0.000

Number of critical points

None 6,40,94,290 0.641 11,141 0.995 9,984 0.998 2,496 0.998

At least one 3,59,05,710 0.359 59 0.005 16 0.002 4 0.002

Exactly one 3,32,02,155 0.332 57 0.005 16 0.002 4 0.002

Exactly two 2,087,768 0.021 2 0.000 0 0.000 0 0.000

Topology-dependent cases

No critical point 2,96,85,763 0.472 11,032 0.985 9,956 0.996 2,488 0.995

Saddle 1,66,00916 0.264 33 0.003 4 0.000 2 0.001

Non-saddle 1,66,01,239 0.264 24 0.002 12 0.001 2 0.001

Saddle & non-saddle 0 0.000 0 0.000 0 0.000

Value-dependent cases

No critical point 3,44,08,527 0.927 109 0.010 28 0.003 8 0.003

Saddle & non-saddle 2,08,7,768 0.056 2 0.000 0 0.000 0 0.000

Higher-order 61,5,787 0.017 0 0.000 0 0.000 0 0.000

Relative occurrences are rounded to three decimal places
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or quadratic intersection equation in s or t . Then the dis-
criminant Δ of the intersection equation and its solutions
are computed. For both cases, solutions lying outside the
cell are dropped.

4. Construct the topological skeleton of the vector field in
the usual way tracing streamlines at the boundary of
hyperbolic sectors and connecting these to other criti-
cal points or boundary points when they get close. The
boundaries of hyperbolic sectors can either be found as
described by Tricoche et al. [29] or by using the eigenvec-
tors of the Jacobian at the critical point. Our implemen-
tation employs an adaptive explicit Runge-Kutta method
for streamline tracing.

8.2 Performance and topology simplification

We propose that, in order to overcome numeric problems in
the vicinity of critical points, streamlines are only traced from
and to boundaries of cells that contain critical points. Within
these cells, streamlines are approximated by a straight line
connecting the intersection point of the trajectory and the cell
boundary with the critical point. This approach has the advan-
tage that typically many small steps of an explicit solver in
the vicinity of the critical point can be saved, thus speeding
up the calculation of the topological skeleton.

Further simplifications leading to speed-ups can be con-
sidered. First, for small cells, the location of the critical point
can be reasonably well approximated by placing the critical
point at an arbitrary position—say, the center—of the cell.
Second, the topology of the vector field for cells with two
critical points can be simplified by replacing the two first-
order critical points by a single artificial second-order critical
point.
The position of the second-order critical point can be approx-
imated by the midpoint of the straight line connecting the two
first-order critical points.

8.3 Numerical stability

To be numerically stable an algorithm has to yield consistent
results for the same input data, no matter how the input data is
ordered. This is especially important for floating-point data,
where the result of interpolation may depend on the interpo-
lation direction and order of instructions. For the algorithm
in Sect. 8.1, this means that no matter how a cell is oriented
in terms of the geometric location of its vertices, the result
of the calculations has to be invariant for the two cells. This
can be achieved by choosing a unique interpolation direction
along cell edges such that this choice always yields the same
sequence of calculations on the floating-point vector field
data. Then, by virtue of consistency of IEEE floating-point

arithmetic [12], the interpolation result and the correspond-
ing vertex and edge classifications have to be identical.

Consider a cell with vertices P1, . . . , Pn , Pi (xi |yi ) (i =
1 . . . n), where xi and yi are floating-point numbers. Then,
without loss of generality one can choose the interpolation
direction along an edge between two vertices to always point
from the vertex with smaller y-coordinate to the vertex with
greater y-coordinate. If the two y-coordinates agree, then
the same argument can be applied to the x-coordinates of the
vertices. This method always yields a unique interpolation
direction as: (1) the inequality comparison operator for IEEE
floating-point numbers is consistent in the sense that if f1 and
f2 are two floating-point numbers, f1 > f2 ⇒ f2 < f1;
(2) the equality comparison operator for IEEE floating-point
numbers is commutative, i.e. f1 = f2 ⇒ f2 = f1.

Our algorithm and the classification of the critical points
depend on a consistent orientation of traversing the boundary
of a cell. This orientation can be defined by the sign of the
oriented area of a cell. For a triangle with vertices P1(x1|y1),
P2(x2|y2), P3(x3|y3), the oriented area is

A∗ = 1

2
(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1).

For the case of quadrilateral cells, a cell is split into two
triangles and the oriented area sequence of one of the two
triangles can be used.

9 Results

We illustrate the results of our algorithm for four test cases.
The first test case consists of randomly generated bilinearly
interpolated vector fields: for each cell vertex, the two vector
field components are random numbers lying in [−1, 1]\{0},
quantized to 10−6. Machine accuracy is set to ε = 10−9

and the threshold of a critical point being of second-order
is chosen to be Δ < 0.05, where Δ is the discriminant of
the intersection equation as described in Sect. 6.3. We have
generated and examined 108 cases. The second test case is
a CFD dataset of an oceanic flow in the Baltic Sea (simu-
lation courtesy of Kurt Frischmuth, University of Rostock),
see Fig. 16. The data set is given on a uniform grid of size
100 × 112, and the vector field is rotated by 90 degrees, c.f.
Theisel et al. [27].

The third data set examined with the algorithm is a planar
slice of a simulated unsteady flow of air in a hot room at a
fixed time step of the simulation (data courtesy of Filip Sad-
lo, Universität Stuttgart). See Fig. 17 for an illustration of the
flow topology extracted with our algorithm. Again, the data
set is given on a uniform grid, this time of size 100 × 100.

As the visualization of flows on surfaces has recently
become a focus of research in the field of topology-based
vector field visualization [14], we chose as a fourth test case
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Fig. 16 Vector field topology of the oceanic flow data set. Black dots
indicate detected critical points, blue lines show the topological skele-
ton, annotations provide the classification (AN: attracting node, RF:
repelling focus, SAD: saddle). a Incorrect topology obtained by a
method that intersects linearized 0-level sets of the x-component (red)
and the y-component (green). Notice how trajectories terminate in crit-
ical points that are not detected as such in the top left of the image. b
Correct topology obtained with our method. The pair of critical points
inside a value-dependent cell is correctly identified (framed area shown
magnified in the bottom right)

a tangential vector field on a torus given on a uniform grid of
size 50 × 50 in parameter space and computed its topology
with our algorithm.

Fig. 17 Vector field topology of the air flow data set calculated with
our algorithm. Separatrices are shown in blue along with a glyph-based
visualization of the vector field, where the arrows encode the vector
direction and the vector norm is color-coded

Table 4 documents the statistics with regard to number
and types of critical points for all test cases. One interest-
ing observation is that, although higher-order critical points
might occur, their frequency is very low (of course depending
on the threshold value for Δ). On the other hand, two critical
points within a cell are (at least in the case of the oceanic
flow) more common and need to be considered in practice.
The most interesting finding is that the realistic ocean and air
flow data sets contain only very few value-dependent cases
(less than 1 percent). Therefore, our algorithm can in both
cases identify and classify more than 99 percent of the critical
points by just analyzing the topology of 0-value points on the
cell boundary—without the need to evaluate the Jacobian,
solve a quadratic system, or apply the sector method [29].
Critical points on the boundary did not occur in this data
series such that one can assume that these occur extremely
seldom. Even if the quantization of the values for the random
vector field test case is decreased to 10−4, only 46 of the 108

generated cases, i.e. 0.000046%, had critical points on cell
boundaries. Generally speaking: The coarser the quantiza-
tion or numeric accuracy of the computations the likelier
the occurrence of critical points on cell boundaries becomes.
None the less we believe their occurrence to be very seldom
in practice.

Figure 16 shows qualitative results for the ocean data set,
illustrating the difference between a linearized version of
the vector field and the original bilinear version: Figure 16a
shows the (incorrect) topological skeleton obtained from the
linearized vector field and Fig. 16b shows the correct version
produced by our method. The differences arise for value-de-
pendent cells that contain two critical points missed when
linearizing the 0-isolines of the vector field’s components.
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Fig. 18 Example of a vector field on a torus. Left: torus immersed in
Euclidean 3-space, right: torus in parameter space. The top and the bot-
tom as well as the left and the right border are identified, respectively.
Again, the vector field is also visualized via glyphs

In terms of flows on surfaces an example in form of a vec-
tor field on the torus is examined. The standard 2-torus T 2

can be parametrized via

f (u, v) = ((a + b cos u) cos v, (a + b cos u) sin v, b sin u) ,

with u, v, a, b ∈ R, 0 ≤ u, v < 2π , 0 < b < a. Using
this parametrization and its Jacobian D f one can project
two-dimensional vector fields defined in parameter space
[0, 2π)2 ⊂ R

2 and their topology obtained with our algo-
rithm to the torus, see Fig. 18.

10 Conclusions and future work

We have presented a novel approach to finding and classi-
fying critical points according to their Poincaré index for
barycentrically and bilinearly interpolated vector fields on
triangular and rectilinear grids in parameter space, respec-
tively. Our approach is cell-based and efficient through the
use of lookup tables reminiscent of the classification of scalar
fields by the marching cubes algorithm. Our algorithm is
able to deal with critical points on cell boundaries, to detect
second-order critical points for bilinearly interpolated vec-
tor fields (together with providing a measure for the stability
of such critical points), and to simplify vector field topology
inside a cell by substituting two first-order critical points with
one of second order. We have demonstrated that, for practical
applications, the number of critical points and their Poincaré
indices can be identified by just examining the intersection
topology of the 0-level sets of the interpolants with the cell
boundaries. We have put our algorithm on a sound mathemat-
ical foundation and showed how group theoretic tools and a
combinatoric description via cell colorings can be used to
solve the problem of critical-point classification, which may
not seem to be of a combinatoric nature at first glance.

As already pointed out in Sect. 9, the topology-based visu-
alization of flow on surfaces has become a prominent field of
research during the last years (c.f. [14]) and it thus would be
of interest to be able to apply the algorithm presented in this
paper to vector fields on triangulations and quadrangulations
of arbitrary surfaces. A simple proof of concept was given in
the case of the torus in Sect. 9. Note that in the quadrangular
case the algorithm is well suited to be used in combination
with the surface parametrization algorithm QuadCover by
Kälberer et al. [13] due to its structure and it thus seems a
natural step to combine these two methods—this is research
in progress.

More fundamental open questions for future work include:
can this method be extended to higher dimensional domains
or to other interpolants such as tensor-product cubic? More
generically, it might be of interest for other areas of visual-
ization to see if they might benefit from combinatoric and
group-theoretic approaches.
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