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Abstract We investigate polyhedral 2k-manifolds as subcomplexes of the boundary
complex of a regular polytope. We call such a subcomplex k-Hamiltonian if it con-
tains the full k-skeleton of the polytope. Since the case of the cube is well known and
since the case of a simplex was also previously studied (these are so-called super-
neighborly triangulations), we focus on the case of the cross polytope and the spo-
radic regular 4-polytopes. By our results the existence of 1-Hamiltonian surfaces is
now decided for all regular polytopes. Furthermore we investigate 2-Hamiltonian 4-
manifolds in the d-dimensional cross polytope. These are the “regular cases” satis-
fying equality in Sparla’s inequality. In particular, we present a new example with
16 vertices which is highly symmetric with an automorphism group of order 128.
Topologically it is homeomorphic to a connected sum of seven copies of S2 × S2. By
this example all regular cases of n vertices with n < 20 or, equivalently, all cases of
regular d-polytopes with d ≤ 9 are now decided.

Keywords Hamiltonian subcomplex · Centrally-symmetric · Tight · PL-taut ·
Intersection form · Pinched surface · Sphere products

1 Introduction and Results

The idea of a Hamiltonian circuit in a graph can be generalized to higher-dimensional
complexes as follows: A subcomplex A of a polyhedral complex K is called k-
Hamiltonian1 if A contains the full k-dimensional skeleton of K . It seems that this

1Not to be confused with the notion of a k-Hamiltonian graph [18].
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concept was first developed by Schulz [38, 39]. A Hamiltonian circuit then becomes
a special case of a 0-Hamiltonian subcomplex of a one-dimensional graph or of a
higher-dimensional complex [12]. If K is the boundary complex of a convex poly-
tope, then this concept becomes particularly interesting and quite geometrical [20,
Chap. 3]. Altshuler [1] investigated 1-Hamiltonian closed surfaces in special poly-
topes. A triangulated surface with a complete edge graph Kn can be regarded as
a 1-Hamiltonian subcomplex of the simplex with n vertices. These are the so-called
regular cases in Heawood’s Map Color Theorem [36], [20, 2C], and people talk about
the uniquely determined genus of the complete graph Kn which is (in the orientable
regular cases n ≡ 0,3,4,7 (12), n ≥ 4)

g = 1

6

(
n − 3

2

)
.

Moreover, the induced piecewise linear embedding of the surface into Euclidean (n−
1)-space then has the two-piece property, and it is tight [20, 2D].

Centrally-symmetric analogues can be regarded as 1-Hamiltonian subcomplexes
of cross polytopes or other centrally symmetric polytopes, see [21]. Similarly we
have the genus of the d-dimensional cross polytope [17] which is (in the orientable
regular cases d ≡ 0,1 (3), d ≥ 3)

g = 1

3
(d − 1)(d − 3).

There are famous examples of quadrangulations of surfaces originally due to
H.S.M. Coxeter which can be regarded as 1-Hamiltonian subcomplexes of higher-
dimensional cubes [20, 25, 2.12]. Accordingly one talks about the genus of the d-cube
(or rather its edge graph) which is (in the orientable case)

g = 2d−3(d − 4) + 1,

see [5, 35]. However, in general the genus of a 1-Hamiltonian surface in a convex
d-polytope is not uniquely determined, as pointed out in [38, 39]. This uniqueness
seems to hold especially for regular polytopes, where the regularity allows a compu-
tation of the genus by a simple counting argument.

In the cubical case there are higher-dimensional generalizations by Danzer’s con-
struction of a power complex 2K for a given simplicial complex K . In particular
there are many examples of k-Hamiltonian 2k-manifolds as subcomplexes of higher-
dimensional cubes, see [25]. For obtaining them, one just has to start with a neigh-
borly simplicial (2k − 1)-sphere K . A large number of the associated complexes 2K

are topologically connected sums of copies of Sk ×Sk . This seems to be the standard
case.

Concerning triangulations of manifolds, a d-dimensional simplicial complex is
called a combinatorial d-manifold if the union of its simplices is homeomorphic to a
d-manifold and if the link of each k-simplex is a combinatorial (d −k −1)-sphere. In
what follows all triangulations of manifolds are assumed to be combinatorial. There
exist triangulations of manifolds which are not combinatorial; for an example based
on the Edwards sphere, see [6].
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With respect to the simplex as the ambient polytope a k-Hamiltonian subcomplex
is also called a (k + 1)-neighborly triangulation since any k + 1 vertices are com-
mon neighbors in a k-dimensional simplex. The crucial case is the case of (k + 1)-
neighborly triangulations of 2k-manifolds. This case was studied by the second au-
thor in [20]. One could call this the case of super-neighborly triangulations in analogy
with neighborly polytopes: The boundary complex of a (2k + 1)-polytope can be at
most k-neighborly unless it is a simplex. However, combinatorial 2k-manifolds can
go beyond k-neighborliness, depending on the topology. Except for the trivial case of
the boundary of a simplex itself, there are only a finite number of known examples
of super-neighborly triangulations, reviewed in [27]. They are necessarily tight [20,
Chap. 4], compare Sect. 5 below. The most significant ones are the unique 9-vertex
triangulation of the complex projective plane [23, 24], a 16-vertex triangulation of a
K3 surface [9], and several 15-vertex triangulations of an 8-manifold “like the quater-
nionic projective plane” [8]. There is also an asymmetric 13-vertex triangulation of
S3 × S3, but most of the examples are highly symmetric. For any n-vertex triangula-
tion of a 2k-manifold M, the generalized Heawood inequality

(
n − k − 2

k + 1

)
≥

(
2k + 1

k + 1

)
(−1)k

(
χ(M) − 2

)

was conjectured in [19, 20] and later almost completely proved by Novik in [32]
and [34]. The equality holds precisely in the case of super-neighborly triangula-
tions. These are k-Hamiltonian in the (n − 1)-dimensional simplex. In the case of
4-manifolds (i.e., k = 2) an elementary proof was already contained in [20, 4B].

In the case of 2-Hamiltonian subcomplexes of cross polytopes, the first nontrivial
example was constructed by Sparla as a centrally-symmetric 12-vertex triangulation
of S2 × S2 as a subcomplex of the boundary of the 6-dimensional cross polytope
[29, 41]. Sparla also proved the following analogous Heawood inequality for the case
of 2-Hamiltonian 4-manifolds in centrally symmetric d-polytopes:

( 1
2 (d − 1)

3

)
≤ 10

(
χ(M) − 2

)

and the opposite inequality for centrally-symmetric triangulations with n = 2d ver-
tices.

Higher-dimensional examples were found by Lutz [30]: There are centrally-
symmetric 16-vertex triangulations of S3 × S3 and 20-vertex triangulations of
S4 ×S4. The 2-dimensional example in this series is the well-known unique centrally-
symmetric 8-vertex torus [21, 3.1]. All these are tightly embedded into the ambient
Euclidean space [27]. The generalized Heawood inequality for centrally symmetric
2d-vertex triangulations of 2k-manifolds

4k+1
( 1

2 (d − 1)

k + 1

)
≥

(
2k + 1

k + 1

)
(−1)k

(
χ(M) − 2

)

was conjectured by Sparla in [42] and later almost completely proved by Novik
in [33].
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In the present paper we show that Sparla’s inequality for 2-Hamiltonian 4-
manifolds in the skeletons of d-dimensional cross polytopes is sharp for d ≤ 9. More
precisely, we show that each of the regular cases (that is, the cases of equality) for
d ≤ 9 really occurs. Since the cases d = 7 and d = 9 are not regular, the crucial point
is the existence of an example for d = 8 and, necessarily, χ = 16. In addition we ex-
amine the case of 1-Hamiltonian surfaces in the three sporadic regular 4-polytopes,
see Sect. 2. It seems that so far no decision about existence or nonexistence could be
made, compare [40].

Main Theorem

1. All cases of 1-Hamiltonian surfaces in the regular polytopes are decided. In par-
ticular there are no 1-Hamiltonian surfaces in the 24-cell, 120-cell, or 600-cell.

2. All cases of 2-Hamiltonian 4-manifolds in the regular d-polytopes are decided
up to dimension d = 9. In particular, there is a new example of a 2-Hamiltonian
4-manifold in the boundary complex of the 8-dimensional cross polytope.

This follows from certain known results and a combination of Propositions 1, 2,
and 3 and Theorem 2 below.

The regular cases of 1-Hamiltonian surfaces are the following, and each case oc-
curs:

d-simplex: d ≡ 0,2 (3) [36]
d-cube: any d ≥ 3 [5, 35]
d-octahedron: d ≡ 0,1 (3) [17].

The regular cases of 2-Hamiltonian 4-manifolds for d ≤ 9 are the following:

d-simplex: d = 5,8,9 [24]
d-cube: d = 5,6,7,8,9 [25]
d-octahedron: d = 5,6,8 Theorem 2.

Here each of these cases occurs except for the case of the 9-simplex [24]. Furthermore
2-Hamiltonian 4-manifolds in the d-cube are known to exist for any d ≥ 5 [25]. In
the case of the d-simplex the next regular case d = 13 is undecided, and the case
d = 15 occurs [9]. The next regular case of a d-octahedron is the case d = 10, see
Remark 2 below.

2 Hamiltonian Surfaces in the 24-Cell, 120-Cell, 600-Cell

There are Hamiltonian cycles in each of the Platonic solids. The numbers of dis-
tinct Hamiltonian cycles (modulo symmetries of the solid itself) are 1,1,2,1,17 for
the cases of the tetrahedron, cube, octahedron, dodecahedron, icosahedron, see [15,
pp. 277 ff.]. A 1-Hamiltonian surface in the boundary complex of a Platonic solid
must coincide with the boundary itself and is, therefore, not really interesting.
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Table 1 Automorphism groups of the Hamiltonian pinched surfaces in the 24-cell

Type Group Order Generators

1 C4 × C2 8 (1 12 16 18)(2 17 23 7)(3 13 20 21)(4 22 11 5)(6 19)(8 24 14 10),

(1 3)(4 8)(5 10)(9 15)(11 14)(12 13)(16 20)(18 21)(22 24)

2 D8 8 (1 16)(2 17)(3 22)(5 20)(6 9)(7 23)(8 12)(10 24)(14 18)(15 19),

(2 3)(4 6)(5 7)(9 11)(12 14)(13 15)(17 20)(19 21)(22 23)

3 C2 × C2 4 (1 24)(2 13)(3 15)(4 17)(5 19)(6 20)(7 21)(9 22)(11 23),

(2 5)(3 7)(4 9)(6 11)(8 18)(13 19)(15 21)(17 22)(20 23)

4 (((C4 × C2) : C2) : C2) : C2 64 (1 8 10 12)(3 13 5 4)(6 15 19 9)(7 17)(11 20 21 22)(14 24 18 16),

(2 3)(4 6)(5 7)(9 11)(12 14)(13 15)(17 20)(19 21)(22 23)

5 S3 6 (1 3)(4 8)(5 10)(9 15)(11 14)(12 13)(16 20)(18 21)(22 24),

(1 22 15)(2 12 13)(3 9 24)(4 17 8)(5 19 10)(6 16 20)(7 18 21)(11 23 14)

6 C2 × D8 16 (1 11)(2 23)(3 14)(4 16)(5 18)(8 20)(10 21)(12 22)(13 24),

(1 5)(3 12)(4 10)(6 19)(7 9)(8 13)(11 18)(14 22)(15 17)(16 21)(20 24),

(1 3)(4 8)(5 10)(9 15)(11 14)(12 13)(16 20)(18 21)(22 24)

Hamiltonian cycles in the regular 4-polytopes are known to exist. However, it
seems that 1-Hamiltonian surfaces in the 2-skeleton of any of the three sporadic reg-
ular 4-polytopes have not yet been systematically investigated. A partial attempt can
be found in [40].

2.1 The 24-Cell

The boundary complex of the 24-cell {3,4,3} consists of 24 vertices, 96 edges, 96
triangles, and 24 octahedra. Any 1-Hamiltonian surface (or pinched surface) must
have 24 vertices, 96 edges, and, consequently, 64 triangles; hence it has Euler char-
acteristic χ = −8. Every edge in the polytope is in three triangles. Hence we must
omit exactly one of them in each case for getting a surface where every edge is in
two triangles. Since the vertex figure in the polytope is a cube, each vertex figure in
the surface is a Hamiltonian circuit of length 8 in the edge graph of a cube. It is well
known that this circuit is uniquely determined up to symmetries of the cube. Starting
with one such vertex figure, there are four missing edges in the cube, which, there-
fore, must be in the uniquely determined other triangles of the 24-cell. In this way,
one can inductively construct an example or, alternatively, verify the nonexistence. If
singular vertices are allowed, then the only possibility is a link which consists of two
circuits of length four each. This leads to the following proposition.

Proposition 1 There is no 1-Hamiltonian surface in the 2-skeleton of the 24-cell.
However, there are six combinatorial types of strongly connected 1-Hamiltonian
pinched surfaces with a number of pinch points ranging between 4 and 10 and with
the genus ranging between g = 3 and g = 0. The case of the highest genus is a sur-
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Table 2 Generating orbits of the 6 types of Hamiltonian pinched surfaces in the 24-cell

Type # p. pts. g Orbits

1 10 0 〈1 2 3〉4, 〈1 2 4〉8, 〈1 3 6〉4, 〈1 4 9〉8, 〈1 5 7〉8, 〈1 5 9〉8, 〈1 6 11〉8, 〈1 7 11〉8, 〈2 5 10〉4, 〈4 6 8〉4

2 10 0 〈1 2 3〉4, 〈1 2 4〉8, 〈1 4 9〉4, 〈2 3 8〉4, 〈2 4 12〉8, 〈2 5 10〉4, 〈2 5 12〉4, 〈2 8 13〉8,

〈2 10 13〉8, 〈4 6 8〉4, 〈8 13 15〉4, 〈10 13 19〉4

3 8 1 〈1 2 3〉4, 〈1 2 4〉4, 〈1 3 6〉4, 〈1 4 9〉2, 〈1 6 11〉2, 〈2 3 8〉4, 〈2 4 12〉4, 〈2 5 10〉2, 〈2 5 12〉2,

〈2 8 13〉2, 〈2 10 13〉2, 〈3 6 14〉4, 〈3 7 10〉2, 〈3 7 14〉2, 〈3 8 15〉2, 〈3 10 15〉2, 〈4 6 8〉4,

〈4 6 16〉4, 〈4 8 17〉2, 〈4 9 16〉2, 〈4 12 17〉2, 〈6 8 20〉2, 〈6 11 14〉2, 〈6 16 20〉2

4 8 1 〈1 2 3〉32, 〈1 2 4〉32

5 6 2 〈1 2 3〉3, 〈1 2 4〉6, 〈1 3 6〉3, 〈1 4 9〉3, 〈1 5 7〉6, 〈1 5 9〉3, 〈1 6 11〉6, 〈1 7 11〉6, 〈2 4 12〉3,

〈2 5 10〉3, 〈2 5 12〉3, 〈4 6 8〉3, 〈4 6 16〉3, 〈4 8 17〉1, 〈5 7 18〉3, 〈5 10 19〉1, 〈6 11 16〉3,

〈7 11 14〉3, 〈7 18 21〉1, 〈11 14 23〉1

6 4 3 〈1 2 3〉8, 〈1 2 4〉8, 〈1 3 6〉8, 〈1 4 9〉8, 〈1 5 7〉16, 〈1 6 11〉8, 〈1 7 11〉8

face of genus three with four pinch points. The link of each of the pinch points in any
of these types is the union of two circuits of length four.

The six types and their automorphism groups are listed in Tables 1 and 2, where
the labeling of the vertices of the 24-cell coincides with the standard one in poly-
make [13].

Type 1 is a pinched sphere which is based on a subdivision of the boundary of
the rhombidodecahedron, see Fig. 1 (left). Type 4 is just a (4 × 4)-grid square torus
where each square is subdivided by an extra vertex, see Fig. 1 (right). These 16 extra
vertices are identified in pairs, leading to the 8 pinch points.

Because −8 equals the Euler characteristic of the original (connected) surface
minus the number of pinch points, it is clear that we can have at most 10 pinch points
unless the surface splits into several components. We present here in more detail
Type 6 as a surface of genus three with four pinch points, see Fig. 3 (produced with
JavaView). Its combinatorial type is given by the following list of 64 triangles:

〈1 2 3〉, 〈1 2 4〉, 〈1 3 6〉, 〈1 4 9〉, 〈1 5 7〉, 〈1 5 9〉, 〈1 6 11〉, 〈1 7 11〉,
〈2 3 8〉, 〈2 4 8〉, 〈2 5 10〉, 〈2 5 12〉, 〈2 10 13〉, 〈2 12 13〉, 〈3 6 14〉, 〈3 7 10〉,
〈3 7 14〉, 〈3 8 15〉, 〈3 10 15〉, 〈4 6 8〉, 〈4 6 16〉, 〈4 9 12〉, 〈4 12 17〉, 〈4 16 17〉,
〈5 7 10〉, 〈5 9 18〉, 〈5 12 19〉, 〈5 18 19〉, 〈6 8 20〉, 〈6 11 14〉, 〈6 16 20〉, 〈7 11 18〉,
〈7 14 21〉, 〈7 18 21〉, 〈8 13 15〉, 〈8 13 17〉, 〈8 17 20〉, 〈9 11 16〉, 〈9 11 18〉, 〈9 12 22〉,
〈9 16 22〉, 〈10 13 19〉, 〈10 15 21〉, 〈10 19 21〉, 〈11 14 23〉, 〈11 16 23〉, 〈12 13 17〉, 〈12 19 22〉,
〈13 15 24〉, 〈13 19 24〉, 〈14 15 20〉, 〈14 15 21〉, 〈14 20 23〉, 〈15 20 24〉, 〈16 17 22〉, 〈16 20 23〉,
〈17 20 24〉, 〈17 22 24〉, 〈18 19 22〉, 〈18 21 23〉, 〈18 22 23〉, 〈19 21 24〉, 〈21 23 24〉, 〈22 23 24〉.

The pinch points are the vertices 2, 6, 19, 23 with the following links:
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Fig. 1 Type 1 (left) and Type 4 (right) of Hamiltonian pinched surfaces in the 24-cell

2: (1 3 8 4) (5 10 13 12)
6: (1 3 14 11) (4 8 20 16)

19: (5 12 22 18) (10 13 24 21)
23: (11 14 20 16) (18 21 24 22)

The four vertices 7, 9, 15, 17 are not joined to one another and not to any of
the pinch points either. Therefore the eight vertex stars of 7,9,15,17,2,6,19,23
cover the 64 triangles of the surface entirely and simply, compare Fig. 2 where the
combinatorial type is sketched. In this drawing all vertices are 8-valent except for
the four pinch points in the two “ladders” on the right-hand side which have to be
identified in pairs.

The combinatorial automorphism group of order 16 is generated by

Z = (1 11)(2 23)(3 14)(4 16)(5 18)(8 20)(10 21)(12 22)(13 24),

A = (1 5)(3 12)(4 10)(6 19)(7 9)(8 13)(11 18)(14 22)(15 17)(16 21)(20 24),

B = (1 3)(4 8)(5 10)(9 15)(11 14)(12 13)(16 20)(18 21)(22 24).

The elements A and B generate the dihedral group D8 of order 8, whereas Z

commutes with A and B . Therefore the group is isomorphic with D8 × C2.

2.2 The 120-Cell and the 600-Cell

The 600-cell has the f -vector (120,720,1200,600), and by duality the 120-cell has
the f -vector (600,1200,720,120). Any 1-Hamiltonian surface in the 600-cell must
have 120 vertices, 720 edges, and, consequently, 480 triangles (namely, two out of
five), so it has Euler characteristic χ = −120 and genus g = 61. We obtain the
same genus in the 120-cell by counting 600 vertices, 1200 edges, and 480 pentagons
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Fig. 2 The triangulation of the Hamiltonian pinched surface of genus 3 in the 24-cell

Fig. 3 Two projections of the Hamiltonian pinched surface of genus 3 in the 24-cell

(namely, two out of three). The same Euler characteristic would hold for a pinched
surface if there is any. We remark that similarly the 4-cube admits a Hamiltonian
surface of the same genus (namely, g = 1) as the 4-dimensional cross polytope.

Proposition 2 There is no 1-Hamiltonian surface in the 2-skeleton of the 120-cell.
There is no pinched surface either since the vertex link of the 120-cell is too small for
containing two disjoint circuits.
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The proof is a fairly simple procedure: In each vertex link of type {3,3} the Hamil-
tonian surface appears as a Hamiltonian circuit of length 4. This is unique, up to sym-
metries of the tetrahedron and of the 120-cell itself. Note that two consecutive edges
determine the circuit completely. So without loss of generality we can start with such
a unique vertex link of the surface. This means that we start with four pentagons cov-
ering the star of one vertex. In each of the four neighboring vertices this determines
two consecutive edges of the link there. It follows that these circuits are uniquely
determined as well and that we can extend the beginning part of our surface, now
covering the stars of five vertices. Successively this leads to a construction of such a
surface. However, after a few steps it ends at a contradiction. Consequently, such a
Hamiltonian surface does not exist.

Proposition 3 There is no 1-Hamiltonian surface in the 2-skeleton of the 600-cell.

This proof is more involved since it uses the classification of all 17 distinct Hamil-
tonian circuits in the icosahedron, up to symmetries of it [15, pp. 277 ff.]. If there is
such a 1-Hamiltonian surface, then the link of each vertex in it must be a Hamiltonian
cycle in the vertex link of the 600-cell which is an icosahedron. We just have to see
how these can fit together. Starting with one arbitrary link, one can try to extend the
triangulation to the neighbors. For the neighbors, there are forbidden 2-faces, which
has a consequence for the possible types among the 17 for them. After an exhaus-
tive computer search it turned out that there is no way to fit all vertex links together.
Therefore such a surface does not exist. At this point it must be left open whether
there are 1-Hamiltonian pinched surfaces in the 600-cell. The reason is that there are
too many possibilities for a splitting into two, three, or four cycles in the vertex link.
For a systematic search, one would have to classify all these possibilities first.

The GAP programs used for the algorithmic proof of Propositions 1, 2, 3 and
details of the calculations are available from the first author upon request.

3 Hamiltonian Submanifolds of Cross Polytopes

The d-dimensional cross polytope βd (or the d-octahedron) is defined as the convex
hull of the 2d points

(0, . . . ,0,±1,0, . . . ,0) ∈ R
d .

It is a simplicial and regular polytope, and it is centrally-symmetric with d di-
agonals, each between two antipodal points of type (0, . . . ,0,1,0, . . . ,0) and
(0, . . . ,0,−1,0, . . . ,0). Its edge graph is the complete d-partite graph with two ver-
tices in each partition, sometimes denoted by K2 ∗ · · · ∗K2. See [31] for properties of
regular polytopes in general. The f -vector of the cross polytope satisfies the equality

fi

(
βd

) = 2i+1
(

d

i + 1

)
.

Consequently, any 1-Hamiltonian 2-manifold must have the following beginning part
of the f -vector:

f0 = 2d, f1 = 2d(d − 1).
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Table 3 Regular cases of
1-Hamiltonian 2-manifolds d 2 − χ Genus g

3 0 0

4 2 1

6 10 5

7 16 8

9 32 16

10 42 3 · 7 = 21

12 66 3 · 11 = 33

13 80 8 · 5 = 40

15 112 8 · 7 = 56

16 120 4 · 3 · 5 = 60

18 170 5 · 17 = 85

19 192 32 · 3 = 96

21 240 8 · 3 · 5 = 120

22 266 7 · 19 = 133

It follows that the Euler characteristic χ of the 2-manifold satisfies

2 − χ = 2 − 2d + 2d(d − 1) − 4

3
d(d − 1) = 2

3
(d − 1)(d − 3).

These are the regular cases investigated in [17]. In terms of the genus g = 1
2 (2 − χ)

of an orientable surface, this equation reads as

g = d − 1

1
· d − 3

3
.

This remains valid for nonorientable surfaces if we assign the genus 1
2 to the real

projective plane. In any case, χ can be an integer only if d ≡ 0,1 (3). The first pos-
sibilities, where all cases are actually realized by triangulations of closed orientable
surfaces [17], are indicated in Table 3.

Similarly, any 2-Hamiltonian 4-manifold must have the following beginning part
of the f -vector:

f0 = 2d, f1 = 2d(d − 1), f2 = 4

3
d(d − 1)(d − 2).

It follows that the Euler characteristic χ satisfies

10(χ − 2) = f2 − 4f1 + 10f0 − 20 = 4

3
d(d − 1)(d − 2) − 8d(d − 1) + 20d − 20

= 4

3
(d − 1)(d − 3)(d − 5).

If we introduce the “genus” g = 1
2 (χ − 2) of a simply connected 4-manifold as the

number of copies of S2 ×S2 which are necessary to form a connected sum with Euler
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characteristic χ , then this equation reads as

g = d − 1

1
· d − 3

3
· d − 5

5
.

These are the “regular cases.” Again the complex projective plane would have genus
1
2 here. Recall that any 2-Hamiltonian 4-manifold in the boundary of a convex poly-
tope is simply connected since the 2-skeleton is. Therefore the “genus” equals half of
the second Betti number.

Moreover, there is an Upper Bound Theorem and a Lower Bound Theorem as
follows:

Theorem 1 (Sparla [41]) If a triangulation of a 4-manifold occurs as a 2-
Hamiltonian subcomplex of a centrally-symmetric simplicial d-polytope, then the
following inequality holds:

1

2

(
χ(M) − 2

) ≥ d − 1

1
· d − 3

3
· d − 5

5
.

Moreover, for d ≥ 6, the equality is possible only if the polytope is affinely equivalent
to the d-dimensional cross polytope.

If there is a triangulation of a 4-manifold with a fixed-point-free involution, then
the number n of vertices is even, i.e., n = 2d , and the opposite inequality holds:

1

2

(
χ(M) − 2

) ≤ d − 1

1
· d − 3

3
· d − 5

5
.

Moreover, the equality in this inequality implies that the manifold can be regarded as
a 2-Hamiltonian subcomplex of the d-dimensional cross polytope.

Remark The case of equality in either of these inequalities corresponds to the “regu-

lar cases.” Sparla’s original equation 43
( 1

2 (d−1)

3

) = 10(χ(M) − 2) is equivalent to the
one above.

By analogy, any k-Hamiltonian 2k-manifold in the d-dimensional cross polytope
satisfies the equation

(−1)k
1

2
(χ − 2) = d − 1

1
· d − 3

3
· d − 5

5
· · · d − 2k − 1

2k + 1
.

It is necessarily (k − 1)-connected, which implies that the left-hand side is half of the
middle Betti number which is nothing but the “genus.” Furthermore, there is a conjec-
tured Upper Bound Theorem and a Lower Bound Theorem generalizing Theorem 1
where the inequality has to be replaced by

(−1)k
1

2
(χ − 2) ≥ d − 1

1
· d − 3

3
· d − 5

5
· · · d − 2k − 1

2k + 1

or

(−1)k
1

2
(χ − 2) ≤ d − 1

1
· d − 3

3
· d − 5

5
· · · d − 2k − 1

2k + 1
,
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Table 4 Regular cases of
2-Hamiltonian 4-manifolds d χ − 2 Genus g Existence

5 0 0 S4 = ∂β5

6 2 1 S2 × S2 [29, 41]

8 14 7 new (Theorem 2)

10 42 3 · 7 = 21 see Remark 2

11 64 32 ?

13 128 64 ?

15 224 16 · 7 = 112 ?

16 286 11 · 13 = 143 ?

18 442 13 · 17 = 221 ?

20 646 17 · 19 = 323 ?

21 720 8 · 5 · 9 = 360 ?

23 1056 16 · 3 · 11 = 528 ?

25 1408 64 · 11 = 704 ?

26 1610 5 · 7 · 23 = 805 ?

28 2070 5 · 9 · 23 = 1035 ?

30 2610 5 · 9 · 29 = 1305 ?

respectively, see [33, 42]. The discussion of the cases of equality is exactly the same.
Sparla’s original version

4k+1
( 1

2 (d − 1)

k + 1

)
=

(
2k + 1

k + 1

)
(−1)k

(
χ(M) − 2

)

is equivalent to the one above. In particular, for any k, one of the “regular cases”
is the case of a sphere product Sk × Sk with (−1)k(χ − 2) = 2 (or “genus” g = 1)
and d = 2k + 2. So far examples are available for 1 ≤ k ≤ 4, even with a vertex
transitive automorphism group see [27, 30]. We hope that for k ≥ 5, there will be
similar examples as well, compare Sect. 6.

4 2-Hamiltonian 4-Manifolds in Cross Polytopes

In the case of 2-Hamiltonian 4-manifolds as subcomplexes of the d-dimensional cross
polytope, we have the “regular cases” of the equality g = 1

2 (χ −2) = d−1
1 · d−3

3 · d−5
5 .

Here χ can be an integer only if d ≡ 0,1,3 (5). Table 4 indicates the first possibilities.

Theorem 2 There is a 16-vertex triangulation of a 4-manifold M ∼= (S2 × S2)#7

which can be regarded as a centrally-symmetric and 2-Hamiltonian subcomplex of
the 8-dimensional cross polytope. As one of the “regular cases,” it satisfies the equal-
ity in Sparla’s inequalities in Theorem 1 with “genus” g = 7 and with d = 8.
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Proof Any 2-Hamiltonian subcomplex of a convex polytope is simply connected
[20, 3.8]. Therefore such an M , if it exists, must be simply connected, in particu-
lar H1(M) = H3(M) = 0. In accordance with Sparla’s inequalities, the Euler char-
acteristic χ(M) = 16 tells us that the middle homology group is H2(M,Z) ∼= Z

14.
The topological type of M is then uniquely determined by the intersection form. If
the intersection form is even, then by Rohlin’s theorem the signature must be zero,
which implies that M is homeomorphic to the connected sum of 7 copies of S2 × S2,
see [37]. If the intersection form is odd, then M is a connected sum of 14 copies of
±CP 2. We will show that the intersection form of our example is even.

The induced polyhedral embedding of this manifold into 8-space is tight since the
intersection with any open halfspace is connected and simply connected, compare
Sect. 5 below. No smooth tight embedding of this manifold into 8-space can exist,
see [44]. Consequently, this embedding of M into 8-space is smoothable as far as the
PL structure is concerned, but it is not tightly smoothable.

The f -vector f = (16,112,448,560,224) of this example is uniquely determined
already by the requirement of 16 vertices and the condition to be 2-Hamiltonian in the
8-dimensional cross polytope. In particular there are 8 missing edges corresponding
to the 8 diagonals of the cross polytope which are pairwise disjoint.

Assuming a vertex-transitive automorphism group, an example was found by us-
ing the software of Lutz described in [30]. The combinatorial automorphism group G

of our example is of order 128. With this particular automorphism group the example
is unique. The special element

ζ = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)

acts on M without fixed points. It interchanges the endpoints of each diagonal and,
therefore, can be regarded as the antipodal mapping sending each vertex of the 8-
dimensional cross polytope to its antipodal vertex in such a way that it is compatible
with the subcomplex M . A normal subgroup H isomorphic to C2 ⊕C2 ⊕C2 ⊕C2 acts
simply transitively on the 16 vertices. The isotropy group G0 fixing one vertex (and,
simultaneously, its antipodal vertex) is isomorphic to the dihedral group of order
8. The group itself is a semidirect product between H and G0. In more detail the
example is given by the three G-orbits of the 4-simplices

〈1 3 5 7 9〉128, 〈1 3 5 9 13〉64, 〈1 3 5 7 15〉32

with altogether 128 + 64 + 32 = 224 simplices, each given by a 5-tuple of ver-
tices out of {1,2,3, . . . ,15,16}. The group G ∼= ((((C4 ⊕ C2) : C2) : C2) : C2) : C2

of order 128 is generated by the three permutations α = (1 12 16 14 2 11 15 13)

(3 10 6 8 4 9 5 7), β = (1 6 2 5)(7 9 2 14)(8 10 11 13)(15 16), γ =
(1 12 3 14)(2 11 4 13)(5 7 16 10)(6 8 15 9).
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The complete list of all 224 top-dimensional simplices is the following:

〈1 3 5 7 9〉, 〈1 3 5 7 15〉, 〈1 3 5 8 13〉, 〈1 3 5 8 15〉, 〈1 3 5 9 13〉, 〈1 3 6 8 10〉,
〈1 3 6 8 12〉, 〈1 3 6 9 12〉, 〈1 3 6 9 16〉, 〈1 3 6 10 16〉, 〈1 3 7 9 15〉, 〈1 3 8 10 16〉,
〈1 3 8 11 14〉, 〈1 3 8 11 16〉, 〈1 3 8 12 13〉, 〈1 3 8 14 15〉, 〈1 3 9 11 14〉, 〈1 3 9 11 16〉,
〈1 3 9 12 13〉, 〈1 3 9 14 15〉, 〈1 4 5 9 12〉, 〈1 4 5 9 13〉, 〈1 4 5 11 13〉, 〈1 4 5 11 16〉,
〈1 4 5 12 16〉, 〈1 4 6 8 12〉, 〈1 4 6 8 13〉, 〈1 4 6 12 14〉, 〈1 4 6 13 15〉, 〈1 4 6 14 15〉,
〈1 4 7 10 12〉, 〈1 4 7 10 13〉, 〈1 4 7 12 15〉, 〈1 4 7 13 15〉, 〈1 4 8 9 12〉, 〈1 4 8 9 13〉,
〈1 4 10 12 16〉, 〈1 4 10 13 16〉, 〈1 4 11 13 16〉, 〈1 4 12 14 15〉, 〈1 5 7 9 12〉, 〈1 5 7 10 12〉,
〈1 5 7 10 15〉, 〈1 5 8 11 13〉, 〈1 5 8 11 14〉, 〈1 5 8 14 15〉, 〈1 5 10 12 16〉, 〈1 5 10 14 15〉,
〈1 5 10 14 16〉, 〈1 5 11 14 16〉, 〈1 6 7 10 13〉, 〈1 6 7 10 16〉, 〈1 6 7 11 15〉, 〈1 6 7 11 16〉,
〈1 6 7 13 15〉, 〈1 6 8 10 13〉, 〈1 6 9 11 14〉, 〈1 6 9 11 16〉, 〈1 6 9 12 14〉, 〈1 6 11 14 15〉,
〈1 7 9 12 15〉, 〈1 7 10 11 14〉, 〈1 7 10 11 15〉, 〈1 7 10 14 16〉, 〈1 7 11 14 16〉, 〈1 8 9 12 13〉,
〈1 8 10 13 16〉, 〈1 8 11 13 16〉, 〈1 9 12 14 15〉, 〈1 10 11 14 15〉, 〈2 3 5 7 11〉, 〈2 3 5 7 14〉,
〈2 3 5 11 13〉, 〈2 3 5 13 16〉, 〈2 3 5 14 16〉, 〈2 3 6 10 11〉, 〈2 3 6 10 14〉, 〈2 3 6 11 15〉,
〈2 3 6 12 14〉, 〈2 3 6 12 15〉, 〈2 3 7 10 11〉, 〈2 3 7 10 14〉, 〈2 3 8 9 11〉, 〈2 3 8 9 14〉,
〈2 3 8 11 16〉, 〈2 3 8 14 16〉, 〈2 3 9 11 15〉, 〈2 3 9 14 15〉, 〈2 3 11 13 16〉, 〈2 3 12 14 15〉,
〈2 4 5 7 9〉, 〈2 4 5 7 11〉, 〈2 4 5 9 15〉, 〈2 4 5 10 11〉, 〈2 4 5 10 15〉, 〈2 4 6 7 14〉,
〈2 4 6 7 16〉, 〈2 4 6 8 10〉, 〈2 4 6 8 16〉, 〈2 4 6 10 14〉, 〈2 4 7 9 15〉, 〈2 4 7 11 14〉,
〈2 4 7 12 13〉, 〈2 4 7 12 15〉, 〈2 4 7 13 16〉, 〈2 4 8 10 16〉, 〈2 4 10 11 14〉, 〈2 4 10 12 13〉,
〈2 4 10 12 15〉, 〈2 4 10 13 16〉, 〈2 5 7 9 14〉, 〈2 5 8 9 14〉, 〈2 5 8 9 15〉, 〈2 5 8 12 15〉,
〈2 5 8 12 16〉, 〈2 5 8 14 16〉, 〈2 5 10 11 13〉, 〈2 5 10 12 13〉, 〈2 5 10 12 15〉, 〈2 5 12 13 16〉,
〈2 6 7 12 13〉, 〈2 6 7 12 14〉, 〈2 6 7 13 16〉, 〈2 6 8 9 11〉, 〈2 6 8 9 16〉, 〈2 6 8 10 11〉,
〈2 6 9 11 15〉, 〈2 6 9 13 15〉, 〈2 6 9 13 16〉, 〈2 6 12 13 15〉, 〈2 7 9 14 15〉, 〈2 7 10 11 14〉,
〈2 7 12 14 15〉, 〈2 8 9 12 13〉, 〈2 8 9 12 16〉, 〈2 8 9 13 15〉, 〈2 8 10 11 16〉, 〈2 8 12 13 15〉,
〈2 9 12 13 16〉, 〈2 10 11 13 16〉, 〈3 5 7 9 11〉, 〈3 5 7 10 12〉, 〈3 5 7 10 15〉, 〈3 5 7 12 16〉,
〈3 5 7 14 16〉, 〈3 5 8 13 15〉, 〈3 5 9 11 13〉, 〈3 5 10 12 13〉, 〈3 5 10 13 15〉, 〈3 5 12 13 16〉,
〈3 6 7 10 13〉, 〈3 6 7 10 16〉, 〈3 6 7 12 13〉, 〈3 6 7 12 16〉, 〈3 6 8 10 14〉, 〈3 6 8 12 14〉,
〈3 6 9 12 16〉, 〈3 6 10 11 15〉, 〈3 6 10 13 15〉, 〈3 6 12 13 15〉, 〈3 7 9 11 15〉, 〈3 7 10 11 15〉,
〈3 7 10 12 13〉, 〈3 7 10 14 16〉, 〈3 8 9 11 14〉, 〈3 8 10 14 16〉, 〈3 8 12 13 15〉, 〈3 8 12 14 15〉,
〈3 9 11 13 16〉, 〈3 9 12 13 16〉, 〈4 5 7 9 13〉, 〈4 5 7 11 13〉, 〈4 5 8 9 14〉, 〈4 5 8 9 15〉,
〈4 5 8 11 14〉, 〈4 5 8 11 15〉, 〈4 5 9 12 16〉, 〈4 5 9 14 16〉, 〈4 5 10 11 15〉, 〈4 5 11 14 16〉,
〈4 6 7 14 16〉, 〈4 6 8 9 11〉, 〈4 6 8 9 16〉, 〈4 6 8 10 12〉, 〈4 6 8 11 15〉, 〈4 6 8 13 15〉,
〈4 6 9 11 14〉, 〈4 6 9 14 16〉, 〈4 6 10 12 14〉, 〈4 6 11 14 15〉, 〈4 7 9 13 15〉, 〈4 7 10 12 13〉,
〈4 7 11 13 16〉, 〈4 7 11 14 16〉, 〈4 8 9 11 14〉, 〈4 8 9 12 16〉, 〈4 8 9 13 15〉, 〈4 8 10 12 16〉,
〈4 10 11 14 15〉, 〈4 10 12 14 15〉, 〈5 7 9 11 13〉, 〈5 7 9 12 16〉, 〈5 7 9 14 16〉, 〈5 8 10 12 14〉,
〈5 8 10 12 16〉, 〈5 8 10 14 16〉, 〈5 8 11 13 15〉, 〈5 8 12 14 15〉, 〈5 10 11 13 15〉, 〈5 10 12 14 15〉,
〈6 7 9 11 13〉, 〈6 7 9 11 15〉, 〈6 7 9 13 15〉, 〈6 7 11 13 16〉, 〈6 7 12 14 16〉, 〈6 8 10 11 15〉,
〈6 8 10 12 14〉, 〈6 8 10 13 15〉, 〈6 9 11 13 16〉, 〈6 9 12 14 16〉, 〈7 9 12 14 15〉, 〈7 9 12 14 16〉,
〈8 10 11 13 15〉, 〈8 10 11 13 16〉.

The link of the vertex 16 is the following simplicial 3-sphere with 70 tetrahedra:

〈1 3 6 9〉, 〈1 3 6 10〉, 〈1 3 8 10〉, 〈1 3 8 11〉, 〈1 3 9 11〉, 〈1 4 5 11〉, 〈1 4 5 12〉, 〈1 4 10 12〉,
〈1 4 10 13〉, 〈1 4 11 13〉, 〈1 5 10 12〉, 〈1 5 10 14〉, 〈1 5 11 14〉, 〈1 6 7 10〉, 〈1 6 7 11〉, 〈1 6 9 11〉,
〈1 7 10 14〉, 〈1 7 11 14〉, 〈1 8 10 13〉, 〈1 8 11 13〉, 〈2 3 5 13〉, 〈2 3 5 14〉, 〈2 3 8 11〉, 〈2 3 8 14〉,
〈2 3 11 13〉, 〈2 4 6 7〉, 〈2 4 6 8〉, 〈2 4 7 13〉, 〈2 4 8 10〉, 〈2 4 10 13〉, 〈2 5 8 12〉, 〈2 5 8 14〉,
〈2 5 12 13〉, 〈2 6 7 13〉, 〈2 6 8 9〉, 〈2 6 9 13〉, 〈2 8 9 12〉, 〈2 8 10 11〉, 〈2 9 12 13〉, 〈2 10 11 13〉,
〈3 5 7 12〉, 〈3 5 7 14〉, 〈3 5 12 13〉, 〈3 6 7 10〉, 〈3 6 7 12〉, 〈3 6 9 12〉, 〈3 7 10 14〉, 〈3 8 10 14〉,
〈3 9 11 13〉, 〈3 9 12 13〉, 〈4 5 9 12〉, 〈4 5 9 14〉, 〈4 5 11 14〉, 〈4 6 7 14〉, 〈4 6 8 9〉, 〈4 6 9 14〉,
〈4 7 11 13〉, 〈4 7 11 14〉, 〈4 8 9 12〉, 〈4 8 10 12〉, 〈5 7 9 12〉, 〈5 7 9 14〉, 〈5 8 10 12〉, 〈5 8 10 14〉,
〈6 7 11 13〉, 〈6 7 12 14〉, 〈6 9 11 13〉, 〈6 9 12 14〉, 〈7 9 12 14〉, 〈8 10 11 13〉.

It remains to prove two facts:

Claim 1 The link of the vertex 16 is a combinatorial 3-sphere. This implies that M is
a PL-manifold since all vertices are equivalent under the action of the automorphism
group.

A computer algorithm gave a positive answer: the link of the vertex 16 is combi-
natorially equivalent to the boundary of a 4-simplex by bistellar moves. This method
is described in [6] and [30, 1.3].
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Claim 2 The intersection form of M is even or, equivalently, the second Stiefel–
Whitney class of M vanishes. This implies that M is homeomorphic to the connected
sum of 7 copies of S2 × S2.

There is an algorithm for calculating the second Stiefel–Whitney class [14]. There
is also an computer algorithm implemented in polymake [13], compare [16] for de-
termining the intersection form itself. The latter algorithm gave the following answer:
The intersection form of M is even, and the signature is zero. �

In order to illustrate the intersection form on the second homology, we con-
sider the link of the vertex 16, as given above. By the tightness condition special
homology classes are represented by the empty tetrahedra c1 = 〈7 10 11 16〉 and
d1 = 〈8 12 13 16〉, which are interchanged by the element

δ = (1 2)(5 6)(7 12)(8 11)(9 14)(10 13)

of the automorphism group. The intersection number of these two equals the linking
number of the empty triangles 〈7 10 11〉 and 〈8 12 13〉 in the link of 16. The two
subsets in the link spanned by 1,5,7,10,11,14 and 2,6,8,9,12,13, respectively,
are homotopy circles interchanged by δ. The intermediate subset of points in the link
of 16 which is invariant under δ is the torus depicted in Fig. 4. The set of points which
are fixed by δ are represented as the horizontal (1,1)-curve in this torus, the element
δ itself appears as the reflection along that fixed curve. This torus shrinks down to
the homotopy circle on either of the sides which are spanned by 1,5,7,10,11,14
and 2,6,8,9,12,13, respectively. The empty triangles 〈7 10 11〉 and 〈8 12 13〉 also
represent the same homotopy circles. Since the link is a 3-sphere, these two are linked
with linking number ±1. As a result, we get for the intersection form c1 · d1 = ±1.
These two empty tetrahedra c1 and d1 are not homologous to one another in M .
Each one can be perturbed into a disjoint position such that the self linking number
is zero: c1 · c1 = d1 · d1 = 0. Therefore c1, d1 represent a part of the intersection
form isomorphic with ±(0 1

1 0

)
. This situation is transferred to the intersection form of

other generators by the automorphism group. As a result, we have seven copies of the
matrix as a direct sum.

Remark 1 Looking at the action of the automorphism group G on the free abelian
group H2(M,Z) ∼= Z

14, we get on the 17 conjugacy classes of G the following char-
acter values:

(14,−2,−2,−2,2,−2,6,−2,−2,−2,6,0,0,0,0,0,0).

Denote by χ the corresponding ordinary character. Using the character table1 of G

given by GAP [43] and the orthogonality relations, this character decomposes into a
sum of five irreducible ordinary characters as follows:

χ = χ2 + χ3 + χ13 + χ14 + χ17.

1We thank Wolfgang Kimmerle for helpful comments concerning group representations.
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Fig. 4 The intermediate torus in the link of 16, invariant under the reflection δ

This shows that C
⊗

Z
H2(M,Z) is a cyclic CG-module. It may be interesting to find

a geometric explanation for this. The involved irreducible characters are as follows:

1a 2a 2b 2c 4a 2d 2e 4b 4c 4d 2f 4e 4f 4g 4h 8a 2g

χ2 1 −1 1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1
χ3 1 −1 1 −1 1 1 1 −1 1 −1 1 1 −1 1 −1 1 −1
χ13 2 . −2 . . 2 2 . −2 . 2 −2 . 2 . . .

χ14 2 . −2 . . 2 2 . −2 . 2 2 . −2 . . .

χ17 8 . . . . −8 . . . . . . . . . . .

Remark 2 There is a real chance to solve the next regular case d = 10 in Sparla’s
inequality. The question is whether there is a 2-Hamiltonian 4-manifold of genus 21
(i.e., χ = 44) in the 10-dimensional cross polytope. A 22-vertex triangulation of a
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manifold with exactly the same genus as a subcomplex of the 11-dimensional cross
polytope does exist. If one could save two antipodal vertices by successive bistellar
flips, one would have a solution. The example with 22 vertices is defined by the orbits
(of length 110 or 22, respectively) of the 4-simplices

〈1 3 5 7 18〉110, 〈1 3 5 7 21〉110, 〈1 3 5 8 18〉110,

〈1 3 5 8 21〉110, 〈1 3 7 18 20〉110, 〈1 3 6 10 15〉22

under the permutation group of order 110 which is generated by

(1 16 7 22 13 5 19 12 3 18 10 2 15 8 21 14 6 20 11 4 17 9)

and

(1 11 17 3 21)(2 12 18 4 22)(5 9 8 20 14)(6 10 7 19 13).

The central involution is

(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22),

which corresponds to the antipodal mapping in the cross polytope. The f -vector
of the example is (22,220,1100,1430,572), and the middle homology is 42-
dimensional, the first and third homologies both vanish. Hence it has “genus” 21
in the sense defined above.

5 Tightness and Tautness

The concept of tightness originates from differential geometry as the equality of the
(normalized) total absolute curvature of a submanifold with the lower bound sum
of the Betti numbers [3, 28]. It is also a generalization of the concept of convexity
since it roughly means that an embedding of a submanifold is as convex as possible
according to its topology. The usual definition is the following:

Definition (Compare [28]) An embedding M → E
N of a compact manifold is called

tight if for any open or closed halfspace EN+ ⊂ E
N , the induced homomorphism

H∗
(
M ∩ EN+

) −→ H∗(M)

is injective, where H∗ denotes an appropriate homology theory with coefficients in a
certain field. The notion of k-tightness refers to the injectivity in the low dimensions
Hi(M ∩ EN+ ) → Hi(M), i = 0, . . . , k, see [20]. An equivalent formulation is that all
nondegenerate height functions are perfect functions, i.e., functions with a number of
critical points which equals the sum of the Betti numbers. This definition applies to
smooth and polyhedral embeddings. A tight triangulation is a triangulation of a mani-
fold such that any simplexwise linear embedding is tight [20, 27]. Any k-Hamiltonian
2k-manifold in the d-dimensional simplex is induced by a tight triangulation with
d + 1 vertices. For a subcomplex of the boundary complex of a convex polytope,
the tightness condition is often determined by purely combinatorial conditions. In
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particular any k-Hamiltonian 2k-manifold in a d-polytope is tightly embedded into
d-space [20, 4.1]. For any tight subcomplex K of the boundary complex of a con-
vex polytope, the following is a direct consequence of the definition above, compare
[20, 1.4]:

Consequence 1 A facet of the polytope is either contained in K , or its intersection
with K represents a subset of K (often called a topset) which injects into K at the
homology level and which is again tightly embedded into the ambient space. In par-
ticular, any missing (k +1)-simplex in a k-Hamiltonian subcomplex K of a simplicial
polytope represents a nonvanishing element of the kth homology by the standard tri-
angulation of the k-sphere.

For the similar notion of tautness, one has to replace halfspaces by balls (or ball
complements) B and height functions by distance functions, see [10]. This applies
only to smooth embeddings. In the polyhedral case it has to be modified as follows:

Definition (Suggested in [4]) A PL-embedding M → E
N of a compact manifold

with convex faces is called PL-taut if for any open ball (or ball complement) B ⊂ E
N ,

the induced homomorphism

H∗
(
M ∩ span(B0)

) −→ H∗(M)

is injective, where B0 denotes the set of vertices in M ∩B , and span(B0) refers to the
subcomplex in M spanned by those vertices.

Obviously, any PL-taut embedding is also tight (consider very large balls), and
a tight PL-embedding is PL-taut, provided that it is PL-spherical in the sense that
all vertices are contained in a certain Euclidean sphere. It follows that any tight and
PL-spherical embedding is also PL-taut [4].

Corollary Any tight subcomplex of a higher-dimensional regular simplex, cube, or
cross polytope is PL-taut.

In particular this implies that the class of PL-taut submanifolds is much richer than
the class of smooth taut submanifolds.

Corollary There is a tight and PL-taut simplicial embedding of the connected sum
of 7 copies of S2 × S2 into Euclidean 8-space.

This follows directly from Theorem 2 by the embedding into the 8-dimensional
cross polytope. In addition this example is centrally-symmetric. There is a standard
construction of tight embeddings of connected sums of copies of S2 × S2, but this
works in codimension 2 only, polyhedrally and smoothly, see [3, p. 101]. The cubi-
cal examples in [25] exist in arbitrary codimension, but they require a much larger
“genus”: For a 2-Hamiltonian 4-manifold in the 8-dimensional cube, one needs the
Euler characteristic χ = 64, which corresponds to a connected sum of 31 copies of
S2 × S2. The number of summands in this case grows exponentially with the dimen-
sion of the cube. For a 2-Hamiltonian 4-manifold in the 8-dimensional simplex, the



260 Discrete Comput Geom (2010) 43: 242–262

Euler characteristic χ = 3 is sufficient. It is realized by the 9-vertex triangulation of
CP 2 [23, 24]. One copy of S2 × S2 cannot be a subcomplex of the 9-dimensional
simplex because such a 3-neighborly 10-vertex triangulation does not exist [24] even
though it is one of the “regular cases” in the sense of the Heawood-type integer con-
dition in Sect. 1. In general the idea behind is the following: A given d-dimensional
polytope requires a certain minimum “genus” of a 2k-manifold to cover the full k-
dimensional skeleton of the polytope. For the standard polytopes like simplex, d-
cube, and d-octahedron, we have formulas for the “genus” which is to be expected,
but we do not yet have examples in all of the cases.

The situation is similar with respect to the concept of tightness: For any given
dimension d of an ambient space, a certain “genus” of a manifold is required for
admitting a tight and substantial embedding into d-dimensional space. This is well
understood in the case of 2-dimensional surfaces [20]. For “most” of the simply con-
nected 4-manifolds, a tight polyhedral embedding was constructed in [22], without
any especially intended restriction concerning the essential codimension. The opti-
mal bounds in this case and in all the other higher-dimensional cases still have to be
investigated.

6 Centrally-Symmetric Triangulations of Sphere Products

As far as the integer conditions of the “regular cases” are concerned, it seems to be
plausible to ask for centrally-symmetric triangulations of any sphere product Sk × Sl

with a minimum number of

n = 2(k + l + 2)

vertices. In this case each instance can be regarded as a codimension-1-subcomplex
of the boundary complex of the (k + l + 2)-dimensional cross polytope, and it can be
expected to be m-Hamiltonian for m = min(k, l). This is a kind of a simplicial Hopf
decomposition of the (k + l + 1)-sphere by “Clifford-tori” of type Sk × Sl .

For n ≤ 20 (i.e., for k + l ≤ 8), a census of such triangulations with a vertex-
transitive automorphism group can be found in [30], compare [27]. Here all cases
occur except for S4 ×S2 and S6 ×S2, and all examples admit a dihedral group action
of order 2n. So far an infinite series of examples seems to be known only for l = 1
and arbitrary k. This is the following:

Proposition 4 (A centrally-symmetric and 1-Hamiltonian Sk ×S1 in ∂βk+3) There is
a centrally-symmetric triangulation of Sk ×S1 with n = 2k+6 vertices and with a di-
hedral automorphism group Dn. Its induced embedding into the (k + 3)-dimensional
cross polytope is tight and PL-taut.

The construction is given in [26] with the notation Mk+1
k (n) (represented as the

permcycle [1k2] there) as follows: Regard the vertices as integers modulo n and con-
sider the Zn-orbit of the (k + 2)-simplex

〈
0 1 2 · · · k (k + 1) (k + 2)

〉
.

This is a manifold with boundary (just an ordinary orientable 1-handle), and its
boundary is homeomorphic to Sk × S1. All these simplices are facets of the cross
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polytope of dimension k + 3 if we choose the labeling such that the diagonals are
[x, x + k + 3], x ∈ Zn. These diagonals do not occur in the triangulation of the man-
ifold, and all other edges are contained. Therefore we obtain a 1-Hamiltonian sub-
complex of the (k + 3)-dimensional cross polytope. The central symmetry is the shift
x �→ x + k + 3 in Zn. The reflection x �→ −x in Zn is an extra automorphism. In the
case k = 1 the group is even larger: It is of order 32. This triangulated manifold is
a hypersurface in ∂βk+3, it decomposes this (k + 2)-sphere into two parts with the
same topology as suggested by the Hopf decomposition.

The same generating simplex for the group Zm with m = 2k + 5 vertices leads to
the minimum vertex triangulation of Sk × S1 (for odd k) or of the twisted product
(for even k), which is actually unique [2, 11]. For any k ≥ 2, it realizes the minimum
number of vertices for any manifold of the same dimension which is not simply con-
nected [7]. Other infinite series of triangulated sphere bundles over tori are similarly
given in [26].

It is not impossible that there will be direct generalizations of Proposition 4 with
infinite series of analogous triangulations of Sk × S3, Sk × S5, . . . , at least for odd k,
and of Sk × Sk , possibly for any k, each with a dihedral and vertex-transitive group
action and Hamiltonian in the cross polytope. This is still work in progress. The
existence in the latter case of a k-Hamiltonian Sk × Sk with n = 4k + 4 vertices and
d = 2k+2 would give a positive answer to a conjecture by Lutz [30, p. 85] and would
realize the equality in Sparla’s inequality in Sect. 3 for any k since

(−1)k
1

2
(χ − 2) = 1 = 2k + 1

1
· 2k − 1

3
· 2k − 3

5
· · · 1

2k + 1
.
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