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Abstract
Structural inhomogeneities in synaptic efficacies have a strong impact on population

response dynamics of cortical networks and are believed to play an important role in their

functioning. However, little is known about how such inhomogeneities could evolve by

means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal

network that combines two different types of plasticity, STDP and synaptic scaling. The

plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simul-

taneously, a highly connected subnetwork of driver neurons with strong synapses emerges.

Coincident spiking activity of several driver cells can evoke population bursts and driver

cells have similar dynamical properties as leader neurons found experimentally. Our model

allows us to observe the delicate interplay between structural and dynamical properties of

the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain

a multitude of different experimental findings in one basic network.

Author Summary

It is widely believed that the structure of neuronal circuits plays a major role in brain func-
tioning. Although the full synaptic connectivity for larger populations is not yet assessable
even by current experimental techniques, available data show that neither synaptic
strengths nor the number of synapses per neuron are homogeneously distributed. Several
studies have found long-tailed distributions of synaptic weights with many weak and a few
exceptionally strong synaptic connections, as well as strongly connected cells and subnet-
works that may play a decisive role for data processing in neural circuits. Little is known
about how inhomogeneities could arise in the developing brain and we hypothesize that
there is a self-organizing principle behind their appearance. In this study we show how
structural inhomogeneities can emerge by simple synaptic plasticity mechanisms from an
initially homogeneous network. We perform numerical simulations and show analytically
how a small imbalance in the initial structure is amplified by the synaptic plasticities and
their interplay. Our network can simultaneously explain several experimental observations
that were previously not linked.
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Introduction
Distributions of synaptic weights are known to have a large influence on the dynamics and
information-processing properties of neural circuits [1–5]. Recent electrophysiological studies
have shown that the distributions of the amplitudes of excitatory postsynaptic potentials
(EPSPs) in cortical [6, 7] as well as hippocampal [5] networks are typically long-tailed and
span several orders of magnitude. This characterizes a topological configuration in which the
majority of synaptic connections are weak and a small number are much stronger [6–9]. At the
same time, distributions of firing rates during spontaneous activity have been found to be long-
tailed [10] and there is increasing evidence that long-tailed distributions play a fundamental
role in brain functioning [11–13].

Studies of microcircuit connectivity have also demonstrated a number of significant inho-
mogeneities, as well as correlations amongst cell activity. Fine-scale functional subnetworks
have been found in cortical networks [1, 3, 14], and it has been shown that cells with strong
outgoing synapses cluster together [3, 7]. Both the clustering of the highly active cells [3] and
the presence of strong synapses [1] are likely to play an important role for network dynamics
and information processing in the neocortex.

Apart from structural inhomogeneities in networks, the impact of individual neurons on
the dynamics of neural networks may also differ substantially. A number of recent in vitro
studies of 1D and 2D dissociated developing cortical and hippocampal cultures have shown
that such networks typically express spontaneous neural activity characterized by network
bursts, and ongoing repetitions of distinctive firing patterns within those bursts [15–19]. Fur-
thermore, several studies have shown that the activity of certain neurons reliably precedes pop-
ulation spikes [16–19]. These early-to-fire neurons have been termed leader neurons [18] and
have been found to form functionally connected networks, the activity of which collectively
precedes most of the observed population bursts [19]. In the 1D case, population bursts have
been found to be triggered by “burst initiation zones” [17] and in the 2D case recent studies
[18, 20] have shown that leader neurons not only precede but also are able to initiate popula-
tion bursts. Nevertheless, the underlying network structure and specific topological properties
of leader neurons and subnetworks of such cells remain to be discovered. Experimental studies
in constrained [21] or chemically modulated [22] cultures give reason to believe that a compli-
cated process of self-organization underlies their emergence. However, from the modeling
point of view, little is understood about how strong inhomogeneities, such as the aforemen-
tioned, could evolve in a self-organized manner by means of activity-dependent synaptic
plasticity.

Synaptic plasticity is widely believed to be the basis for learning and memory and shapes the
distribution of synaptic weights, which has been found to be typically long-tailed in a number
of recent experimental studies [6, 7]. The influence of long-tailed weight distributions on net-
work dynamics has been studied in a number of recent works [2, 4, 5, 12, 23], and it has been
shown that such distributions can increase spike-based information transfer and facilitate
information processing in neural networks [5, 24].

Yet, also in the latter case little is known about how experimentally observed activity-modu-
lated synaptic plasticity, such as spike-timing-dependent plasticity [25–27] (STDP) and
homeostatic plasticity [28, 29] could lead to a symmetry-breaking in the distributions of synap-
tic weights of an initially homogeneous network, or to the preservation of inhomogeneities pre-
scribed by certain initial conditions [30, 31]. Even less is known about how networks could
self-organize to simultaneously express the aforementioned properties such as having both
long-tailed distributions of weights and firing rates at the same time [2], cells with different
dynamical effects on network activity, and subnetworks with distinct dynamical and structural
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properties similar to the ones observed experimentally. Although recent theoretical models
have proposed mechanisms that lead to the emergence of long-tailed synaptic weight distribu-
tions [32, 33], and in case of the SORN model [33] to other interesting aspects of self-organiza-
tion, these either employ a specially tailored plasticity rule for this purpose [32], or do not
express long-tailed firing-rate distributions [33].

It is well known that networks of spiking neurons can exhibit strongly irregular dynamics if
excitatory and inhibitory inputs to each neuron balance, such that the network is driven by
fluctuations in its input, resulting in each neuron producing spikes at irregular times [24, 34,
35]. Such networks are called balanced state networks. They combine computational simplicity
and dynamics that closely resembles activity recorded electrophysiologically in vivo from corti-
cal cells of behaving animals [36, 37]. This makes balanced state networks a very attractive and
widely used theoretical model for cortical tissue [34, 35, 38, 39].

Our goal for this study was to investigate processes of self-organization in such networks
brought about by means of synaptic plasticity. We therefore consider a random network of
spiking neurons in the balanced state, operating in the asynchronous irregular (AI) regime [34,
35] that is believed to be a good fit to the activity of cortical networks in vivo [36, 37]. We
endow it with two activity-dependent synaptic plasticity rules, namely spike-timing-dependent
plasticity [26, 40, 41] (STDP) and synaptic scaling [29].

In its prototypical form, STDP causes long-term potentiation (LTP) of a synapse if presyn-
aptic spikes repeatedly occur some milliseconds before postsynaptic ones, whereas a reversed
temporal order causes long-term depression (LTD). Since its initial discovery at glutamatergic
synapses [25, 26, 41], many forms of STDP have been observed experimentally [42], also such
forms acting at GABAergic synaptic connections [43–47] and many models have been pro-
posed [27, 48–52] to describe the mechanisms and dynamics of STDP. In particular, STDP act-
ing at inhibitory-excitatory connections has been shown to influence spiking dynamics of
hippocampal pyramidal neurons [45]. Several recent modeling studies have shown that inhibi-
tory STDP has a stabilizing effect on network dynamics [53–56], and others also have started
addressing questions of functional aspects of inhibitory plasticity [57, 58].

Another well-studied form of synaptic plasticity is synaptic scaling [29, 59], a form of
homeostatic synaptic plasticity [28] that describes the up- and down-regulation of a neuron’s
synaptic input in order to keep a preferred mean target firing rate.

It is well known that STDP alone can lead to instabilities in network dynamics due to effects
of positive resonance which result in runaway excitation, and that endowing a random network
solely with a multiplicative or power-law STDP rule acting at excitatory-excitatory synaptic
connections while keeping the other synaptic efficacies fixed does not lead to stable effects of
self-organization [30, 31]. Combinations of STDP and synaptic scaling, however, are known to
be able to keep network dynamics in a stable and biologically plausible regime [60], and to sup-
port non-trivial computations underlying many optimization tasks [61]. Furthermore, it has
been shown that combining Hebbian and homeostatic plasticity rules both has a stabilizing
effect on network dynamics [62], and it has been found to express structure-building properties
in simple model networks [63] of rate-based neurons.

Here, we investigate how the inclusion of synaptic scaling and inhibitory STDP could bring
about self-organization in spiking networks. Our model network develops both long-tailed dis-
tributions of synaptic weights and firing rates, similar to those observed experimentally [6, 10].
Moreover, a delicate interplay between dynamics and synaptic plasticity leads to the emergence
of a special group of neurons that we call driver neurons. They form subnetworks that can take
strong influence on network dynamics and share properties of certain neurons and subnet-
works found experimentally [1, 3, 18, 19]. The phenomena that we observe are generic and
hold under alternations of the plasticity rules and their parameters.
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Results
We started with a classical balanced state model [34, 35] as a randomly connected, fully recur-
rent network of leaky integrate and fire neurons (see Methods). We first considered a static net-
work in which all synaptic efficacies are equal and constant and we reproduced the well-
studied asynchronous irregular (AI) state of activity in which neuronal spiking is fluctuation-
driven. We then endowed the network with different kinds of synaptic plasticity. Specifically,
we added additive Hebbian STDP rules acting at excitatory-excitatory [27] (E-E) and inhibi-
tory-excitatory [44] (I-E) synaptic connections and a synaptic scaling rule [28, 29] that acts at
the postsynaptic site of E-E connections (see Fig A in S1 Text for a schema of the network
setup). The synaptic scaling is implemented as a normalization of the sum of all incoming
excitatory synaptic connections, similar to experimentally observed rules [59] (see Methods).

In all which follows, synaptic weights are normalized so that their initial values are 1, and
then multiplied by a scaling factor to obtain a physiological quantity (see Methods). Dynamic
synapses are allowed to change in strength to values between a minimal weight of 0 and a maxi-
mal weight of wmax

e ¼ 20 and wmax
i ¼ 5 for E-E and I-E connections, respectively.

Raster plots of network activity without plasticity and after a transient phase lasting around
5 hours of network activity after switching on the plasticity rules show qualitatively similar
behavior (see Fig B in S1 Text). During the transient phase the network rests in the AI state of
activity and expresses long-tailed distributions of firing rates. We observe that synaptic plastic-
ity increases the mean population firing rates, but only very slightly.

Apart from networks in which all initial weights are equal, we also considered networks
with initially Gaussian and uniform weight distributions and obtained the same qualitative
results after a transient phase. We also found that the results are not sensitive to variations in
the learning rates of the STDP rules (see Section STDP learning rates). Furthermore, results
remained qualitatively comparable even when replacing the learning rules (see Section Gener-
ality of the model): We studied a variant of the model in which we replaced the synaptic nor-
malization with a homeostatic mechanism acting multiplicatively on the synaptic weights on
slower time scales [28] (see Section Different forms of homeostatic plasticity and Section 12.3
in S1 Text), as well as variants in which the additive STDP rule at excitatory synapses was
replaced with a partly or fully multiplicative one (see Section Different STDP rules and Section
12.1, Section 12.2 in S1 Text). For all variants we studied, most aspects of the findings were pre-
served (see Section Generality of the model).

Long tailed distributions of weights and rates
After a transient phase, the weight distributions of the dynamic E-E and I-E synaptic connec-
tions have settled to their new stable shapes (see Fig 1). The mean synaptic strength of E-E con-
nections is kept fixed at a value of 1 by the synaptic scaling rule, but the variance grows rapidly
(see Fig 1, 1D). We observed that E-E connections undergo a symmetry breaking and that we
obtain a long-tailed distribution of synaptic weights after convergence (see Fig 1, 1B). The
EPSP distributions found in cortical and hippocampal networks of excitatory neurons are typi-
cally long-tailed [5–7]. Such types of weight distributions can lead to optimal enhancement of
the responses of individual neurons to input and are thus beneficial for information transmis-
sion at strong synapses, as was shown recently [4, 5, 24]. We used a maximum likelihood esti-
mator for the exponent to fit a power-law distribution with a cutoff into the middle part of the
synaptic weights distribution, omitting the strongest 5% of the excitatory synaptic connections.
Our fitting procedure was modified from [64]. We found a power-law exponent α = −1.92 and
an upper cutoff xmin = 0.205, Fig 1B. Although visually the fit does look good, with the amount
of data we produced, it is possible to reject the power-law hypothesis [64]. However, it is clear
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that the truncated distribution has a long-tail behavior and that the probability decays approxi-
mately as a power-law.

We obtained similar results when we exchanged the additive STDP rule with a partly or
fully multiplicative one (see Section Different STDP rules).

The weights of the I-E connections evolve to a near Gaussian form. This is due to the fact
that inhibitory STDP is subject to negative feedback and thus yields unimodal distributions of
synaptic strengths even in the case of a purely additive plasticity rule [54].

In addition to expressing long-tailed weight distributions after convergence, the network
rests in the AI regime and expresses approximately log-normal firing rate distributions
throughout the transient state (see Fig 1A). We observe many cells firing at very low rates close
to 0 Hz and only a few cells firing at rates up to 30 Hz, a property in line with experimental

Fig 1. Distributions of firing rates and synaptic weights after synaptic plasticity. A: Distribution of firing rates of excitatory neurons. The magenta line
shows a log-normal fit. B: Distribution of excitatory-excitatory synaptic weights. The magenta line shows a power-law fit to the middle part of the distribution.
C: Distribution of inhibitory-excitatory synaptic weights. The dashed line indicates the mean.D: Evolution of excitatory-excitatory and inhibitory-excitatory
weight means and variances.

doi:10.1371/journal.pcbi.1004420.g001
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data obtained during spontaneous cortical activity in vivo [10] and ubiquitous in brain net-
works [12].

While log-normal rates are known to be a general and robust property of random balanced
state networks with homogeneous weights [23], the combination of both long-tailed distribu-
tions of firing rates and synaptic weights is not a straightforward property [2].

Driver neurons
Plasticity in the network leads to the development of few exceptionally strong excitatory synap-
ses (see Fig 1B). Interestingly, many of these synapses are found on excitatory neurons which
have predominantly strong outgoing connections and which fire at higher than average rates.
As we will show in the following, the elevated firing rates are in fact causal for the emergence of
their strong outgoing weights (see Section Emergence of driver neurons). We call these neurons
driver cells (or driver neurons) and characterize them by distributions of outgoing excitatory
synaptic weights with a high mean value (see Fig 2A).

To define the group of driver neurons we take the top 0.5 percent of the excitatory cells with
the largest mean outgoing synaptic strength (see Fig 2A). As our network consists of 4000 neu-
rons, this amounts to 20 driver cells in the network. As the distribution of mean outgoing
weights in the network is unimodal, there is no clear-cut threshold separating any group of
cells from the rest of the population in this distribution. The particular choice of the threshold
results in a very strong dynamical impact of the driver neurons as discussed in section Dynam-
ical impact of driver neurons.

Fig 2. Firing rates andmean outgoing weights of excitatory cells. Each dot represents one excitatory cell. Driver cells are shown in red, others in gray.
Dashed red line marks threshold on the mean outgoing weight for the driver cell property. Histograms on the top and the right side show the distribution of
firing rates and mean outgoing excitatory weights, respectively. A: network including inhibitory STDP,B: Network without inhibitory STDP.

doi:10.1371/journal.pcbi.1004420.g002
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Another possibility to define driver neurons would be to use a threshold located at three
standard deviations above the mean. In this way we select neurons that have much stronger
outgoing weights than expected under the hypothesis of normally distributed mean outgoing
strengths. In contrast to the case of a normal distribution where this choice will result in an
expected 0.23% of all cells, we classify 3% of the population as driver neurons using the afore-
mentioned criterion. Using this choice, there is also a detectable dynamical difference between
the driver neuron group and the rest of the network, though not as strong as for the 0.5%
threshold (see Section 9 in S1 Text).

The clustering of strong outgoing synapses in the network is shown in Fig 3 (see also Fig U,
top left in S1 Text). Here, we plotted the quantiles of the distribution of the mean synaptic
strength per neuron in the original network. For comparison we also plotted quantiles of surro-
gate data obtained by shuffling the synaptic weights among all excitatory synapses. This opera-
tion destroys all correlations in synaptic weights introduced by the plasticity mechanisms,
while leaving network topology and the overall distribution of synaptic strengths unchanged.
As we can see in Fig 3, for the shuffled networks (we show the mean and the standard deviation
of 100 shufflings, standard deviation very small and almost invisible in the plot), most cells
have a mean outgoing weight of around 1, the mean excitatory weight in the network.

The self-organization of driver cells is due to a delicate interplay of network dynamics and
synaptic plasticity. For example, driver neurons are much less pronounced in a model network
where we do not include inhibitory STDP (see Fig 2B). We will describe the process of their
emergence in more detail in the following.

Emergence of driver neurons
Looking at driver cells in the equilibrium network and at the same cells early in the network
evolution (that we call future driver cells), we found that they fire at rates much higher than the
network average (network average approximately 5 Hz, driver group average approximately 25

Fig 3. Quantiles of mean outgoing weight distribution of excitatory cells.Green curve obtained from the
developed network. Orange curve obtained by shuffling weights at the existing connections, dashed line: the
average mean outgoing weight. Shaded areas: Red marks driver cells as they are defined in the manuscript
at the 99,5% percentile, gray marks values above three standard deviations from the mean (at the 97%
percentile).

doi:10.1371/journal.pcbi.1004420.g003
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Hz, see Fig 2A). In the following, we will show that this is the main reason for the emergence of
their strong outgoing synaptic connections:

STDP dynamics of the excitatory synaptic weights in our network can be seen as a random
walk on the closed interval [0, wmax]. Here, the probability to increase the weight grows with
increasing synaptic weight, and for weights above a certain threshold the average impact on syn-
aptic weight of each presynaptic spike is positive. In a model without homeostatic plasticity we
observed that once a synaptic weight reaches this threshold it converges to its maximum with
high probability, with a velocity proportional to the firing rate of the neuron. As we included a
postsynaptic homeostatic plasticity rule in our model at E-E synapses that constrains the total
sum of weights onto each neuron, this led to a competition of all excitatory synapses converging
onto a given excitatory postsynaptic cell over a limited pool of total synaptic efficacy.

One characteristic of many STDP rules as well as the one that we include in our model is
that synapses connecting a highly active presynaptic cell with a less active postsynaptic one (in
terms of their mean firing rates) tend to undergo LTP [65, 66]. Thus, outgoing synapses of
driver cells that fire faster than the average cell have a higher probability to undergo LTP. Syn-
apses from future driver cells are the ones to predominantly win that competition over avail-
able synaptic efficacy, diminishing the influence of other cells (see Fig 4B and Section 4 in S1
Text). This ultimately allows driver cells to emerge and to have strong influence on their post-
synaptic networks. For our model we support this by analytical considerations (see Methods).

We observe that the higher firing rates of (future) driver cells is due to reduced inhibitory
currents those cells receive (see Fig C, left in S1 Text). Currents in our model are influenced by
two variables, synaptic weights and presynaptic firing rates. We find that the reduced inhibi-
tory currents that drivers receive are a result of two separate effects of local network topology:
First of all, driver cells have a lower than average number of converging inhibitory synapses.
Secondly, inhibitory cells which are presynaptic to driver cells have on average a higher number
of converging inhibitory synapses than randomly selected inhibitory cells of the network. The
latter results in lower than average firing rates of the inhibitory cells presynaptic to driver cells
(see Fig D in S1 Text) and the combination of these two effects leads to a permanently reduced
inhibitory drive to driver cells. As the included inhibitory STDP rule is subject to a form of

Fig 4. Weight dynamics of inhibitory STDP and of the interplay of excitatory STDPwith synaptic scaling. A: Evolution of inhibitory synaptic weights of
synapses converging onto postsynaptic cells with different rates. The presynaptic cell fires at a rate of around 5 Hz. Solid lines showmeans of 5 trials,
shaded areas standard deviations. B: Evolution of excitatory synaptic weights of 80 STDP synapses converging onto one postsynaptic cell with synaptic
scaling active at the postsynaptic site implemented in the form of a weight normalization, one trial. All cells fire at rates of around 5 Hz except the first 10
presynaptic cells shown in the bottom rows that fire at around 25 Hz.

doi:10.1371/journal.pcbi.1004420.g004
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self-regulatory dynamics with negative feed-back that becomes stronger with increasing synap-
tic weight [54], inhibitory plasticity cannot fully compensate this reduced inhibitory drive to
driver cells by increasing inhibitory weights: On the one hand, inhibitory STDP in our model
tries to compensate the high rate of the under-inhibited neurons by increasing the converging
inhibitory weights to those cells. On the other hand, each inhibitory presynaptic spike delays
the postsynaptic spike for an increasing period of time with increasing inhibitory synaptic
weight, thus decreasing the positive contribution of the STDP rule. This results in a situation in
which the converging inhibitory weights become stationary at a value below the maximal
inhibitory weight, even in the case of high postsynaptic firing rates as seen in the case of driver
neurons (see Fig 4).

Altogether, we thus find that driver cells in our model are mainly determined by (local) net-
work topology and that their emergence is due to an interplay of all three plasticity rules active
in the network. In order to test the sensitivity of the observed effects to changes in the network
size, we simulate networks of 10,000 and 20,000 cells and find that also in these we obtain qual-
itatively similar results (see Section 10 in S1 Text).

Dynamical impact of driver neurons
In the following, we will investigate dynamical and topological properties of the group of driver
cells and compare them to randomly sampled groups of non-driver cells of the same size.

One question we wanted to answer is whether the emergence of driver neurons influences
the dynamics of the network. To answer this question, we forced both the group of driver cells
and a group of randomly selected non-driver cells to fire two consecutive spikes. We observed
the network response in both cases. We achieved this by providing two brief pulses lasting 0.5
ms of a very strong constant current input to the group of stimulated cells. Those two pulses
were separated by a delay of 2 ms to allow all cells to leave their refractory periods after emit-
ting the first spike. We furthermore only considered cases in which none of the stimulated cells
was refractory prior to stimulation so that all cells of the stimulated groups fired exactly two
spikes within 2 + �ms, where �� 1 ms is dependent on the membrane potential of the cell
prior to the stimulation.

We chose this stimulation protocol to imitate a bursting activity in the chosen subpopula-
tion. To probe a baseline response of the network, we stimulated the same number of randomly
selected non-driver cells with the same protocol. In the latter case, the network firing rate rises
shortly due to the induced simultaneous firing of the stimulated neurons, but there are no last-
ing effects on network dynamics (see Fig 5B). On the other hand, the stimulation of the driver
cell group results in a prolonged elevation of the firing rate similar to a population spike (see
Fig 5A).

To get a more precise picture, we observed the network dynamics subject to the condition
that a number of driver neurons spontaneously fire in a synchronous way. We considered
events in which a certain fraction of the driver cells all fire within a 1 ms time bin and average
the excitatory population rates before and after this event, obtaining a synchrony triggered
average (STA) curve (see Fig 6A). For comparison, we sampled a random group of non-driver
cells of the same size and considered coincident spikes from its members (see Fig 6B). The STA
curves for the random group are symmetric around the moment of synchronization. This indi-
cates that the probability of finding a given number of neurons from this group firing coinci-
dently within 1 ms is higher when the network rate is higher than usual, but this event has no
effect on network dynamics. On the contrary, two synchronous spikes from the driver group
are sufficient to result in a detectable and causal elevation of the population firing rate. This
effect becomes more pronounced for larger groups of driver cells firing synchronously (see Fig
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Fig 5. Raster plots of excitatory population activity during stimulation. A: Stimulation of 20 driver cells.B: Stimulation of 20 random non-driver cells.
Times of stimulation are highlighted in light green, red dots indicate spikes of stimulated group, blue dots indicate spikes of non-stimulated neurons. The
bottom of each figure shows the PSTH of the excitatory population.

doi:10.1371/journal.pcbi.1004420.g005

Fig 6. Synchrony triggered averages for driver neurons and group of 20 randomly selected non-driver neurons. A: STA for driver cells firing
coincidently within 1 ms.B: STA for randomly sampled cells firing coincidently within 1 ms.C: STA for stimulated groups of 1, 2, 4, 8 and 16 cells. On all plots
traces are averages of the excitatory population firing rate and a vertical dashed line marks the time bin of synchronous spiking. In C, magenta line:
coincident spiking of driver cells, cyan line: random cells.

doi:10.1371/journal.pcbi.1004420.g006
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6A). Choosing the top 3% of cells with the highest mean outgoing weights as drivers predict-
ably diminishes the absolute impact of synchronous driver spiking on network dynamics, but
qualitatively the results remain unchanged (see Section 9 in S1 Text).

We also performed the same averaging in a setting in which a selected number of driver and
random non-driver neurons are forced to spike coincidently by providing a brief stimulation
with a strong constant current input (see Fig 6C). The response of the network to the additional
synchronous spiking of driver neurons is similar to the case of spontaneous synchrony. A pro-
longed phase of elevated activity is observed and the effect grows with the number of activated
neurons. On the other hand, even after a stimulation of many non-driver neurons, activity rap-
idly returns to the base-line level and no prolonged change in the network dynamics can be
observed.

A recent series of experimental studies performed in vitro [18–20] in dissociated hippocam-
pal and cortical cell cultures reported the existence of certain special neurons termed leader
neurons. They were characterized by their firing activity stably preceding population bursts in
the culture. Leader neurons were found in a wide variety of dissociated cultures obtained from
both hippocampal and cortical cells from embryonic, newborn (< 24h) and juvenile (P16–17)
rats [18] and under a wide variety of feeding protocols. It was found that synchronized firing of
leader neurons increases the probability of the initiation of a population burst above chance
level [18]. Furthermore, recent experimental work [20] shows that leader neurons do not just
passively precede bursting activity in the cultures, but can actively trigger it.

Whereas our model network stays in the asynchronous irregular activity regime that differs
greatly from the synchronized bursting behavior of the hippocampal cultures, there are still
periods of elevated activity, and driver neurons fire preceding them and can cause such events
if many drivers are triggered to fire simultaneously, a property shared with leader neurons.
There are further properties that the driver neurons in our model share with leader neurons,
for example the tendency to form functional subnetworks [18, 19] (see Section Stability and
topology of the driver neuron subnetwork). Moreover, it was shown [16–18] for leader neurons
that the property of early spiking during population bursts is very likely to be caused by synap-
tic input (reduced inhibition or increased excitation, or a combination of both) to those cells
and not intrinsic cell properties (e.g. a reduced firing threshold), a finding we also made for the
driver neurons in our model. It is an interesting open question to elucidate what will happen if
the network is set to stay in the bursting regime throughout its development, that we consider
for a follow up publication.

Moreover, a recent experimental study [3] assesses the existence of subnetworks of highly
active excitatory cells in the somatosensory cortex of juvenile mice, expressing both character-
istics of leader neurons and driver neurons and thus giving further experimental support for a
unification of the two concepts.

Stability and topology of the driver neuron subnetwork
In earlier studies of balanced state networks with a power-law or multiplicative STDP rule act-
ing at excitatory-excitatory connections [30, 31], strong synapses arising due to a temporary
symmetry breaking were not stable and disappeared after some time. In our model the strong
synapses diverging from the driver neurons remain strong over long periods of time. Conse-
quently, the property of belonging to the group of driver cells is stable over long periods of net-
work time. This is due to the fact that in our model the property of becoming a driver cell is
mainly determined by local network topology. It is an interesting question what will happen in
much larger networks. To test for the sensitivity of the results to network size, we simulated
networks of 10,000 and 20,000 neurons. We found that increasing network size in the
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considered ranges did not significantly change the shape of the converged weight distributions
or the clustering of strong outgoing weights (see Section 10 in S1 Text).

We furthermore observed that driver cells form “rich club” subnetworks in which most syn-
apses are strong. This can be explained by the fact that driver cells emerge in waves, recruiting
cells from their postsynaptic networks. As the outgoing synaptic connections of future driver
cells which fire at much higher than average rates undergo LTP, this leads to elevated excitatory
currents in the cells postsynaptic to driver cells and to an increase in their firing rates. This, in
turn, increases the chances of the postsynaptic cells of also becoming driver cells. This iterative
process terminates at some point as the total available synaptic weight in the network is limited
by a homeostatic rule and the fact that inhibitory STDP up-regulates converging inhibitory
weights onto cells with elevated firing rates.

To illustrate the effect, we simulated 1000 different networks and looked at the driver cells
that emerged in those networks and their subnetworks. To measure the connectedness of the
subgroups we studied the number of synaptic links within two groups of n = 20 neurons each,
the group of driver neurons and a group of randomly sampled non-driver neurons. We found
that the driver cell group has a significantly higher number of synaptic connections Cdriver

compared to the number of synaptic connections Crand in the random group. The random
group on average expressed Crand = 7.35 ± 3.30 (mean ± standard deviation) synaptic connec-
tions in their subnetwork. Not surprisingly, this is very close to the number of expected synap-
tic connections in a random network of 20 nodes with connection probability p = 0.02 which is
C0 = 20�19�0.02 = 7.6. In contrast, we found on average Cdriver = 12.14 ± 2.65 predominantly
strong synaptic connections in the driver neurons subnetwork, an almost twofold increase
compared to the random group. Similar relations were found in recent experimental studies of
developing cortical networks. Stable subnetworks of more active cells were found to express a
higher amount of connectedness [3]. Moreover, a tendency to higher mean EPSP amplitudes
with lower variances within highly connected subnetworks was found [7].

The question remains whether there are other topological properties that distinguish driver
neurons from the rest of the population, apart from the reduced inhibitory in-degrees. To
answer this question we measured both excitatory and inhibitory in- and out-degrees through-
out 1000 different networks. We found that the number of incoming and outgoing excitatory
synaptic connections does not distinguish driver neurons from the rest of the network in our
model, as we can already see in the example network (see Fig 7A).

To asses the observed difference in inhibitory in-degrees more clearly, for each network sim-
ulation we extracted the driver group after convergence of the synaptic weights and took one
random group of non-driver neurons of the same size. As expected from the definition, the dis-
tribution of outgoing excitatory synaptic weights allows to distinguish the two groups of neu-
rons dramatically (see Fig 7C). The distributions of incoming inhibitory degrees are also easily
separable across the two groups (see Fig 7D). To compensate the smaller incoming inhibitory
degree, inhibitory STDP up-regulates inhibitory weights converging onto driver cells such that
they receive on average much stronger incoming inhibitory weights (see Fig 7E). But as dis-
cussed earlier, they none the less receive reduced inhibitory currents when compared to the
network average (see Section Inhibitory STDP).

To verify our hypothesis that driver cells in our model are mainly distinguished by proper-
ties of local network topology, we performed simulations of 1000 networks with varying initial
conditions but a fixed network topology. To induce statistical fluctuations, we stimulated the
networks with Poisson noise and then looked at the probability (assessed via the relative fre-
quency) of each cell to belong to the driver group after the synaptic weights have converged.
We found that the driver neuron population remained mainly unchanged independently of ini-
tial conditions and that roughly 30 different neurons were found in the driver cell group across
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all trials (see Fig 7B). The source of the variation between the outcomes is in the random ini-
tialization and input fluctuations. Altogether, the property of belonging to the driver group is
thus not solely but mainly dependent on network topology.

Another interesting question is how large the variation in local network connectivity has to
be in order to allow for the emergence of driver cells. To answer this question, we simulated a
fully homogeneous network in which all cells have the same in-degree of both excitatory and
inhibitory connections. In this case the weight distributions almost remained delta peaks, i.e.
each synaptic weight stayed w� 1 even subject to plasticity and no driver cells emerged (see
Fig I, left in S1 Text).

Interestingly, already a slight amount of under-inhibition suffices to allow for the emergence
of driver neurons. We demonstrated this by taking a random group of 50 cells in the fully
homogeneous network and selectively pruned 10% of the inhibitory synapses converging onto
each cell of the group. We found that already this small change in homogeneity suffices to
allow the group to become driver cells (see Fig I, right in S1 Text).

Fig 7. Statistics and connectivity of driver cells. A: Scatter plot of the mean outgoing synaptic weight after synaptic plasticity versus node degrees of
excitatory cells for one network realization. Dashed lines denote corresponding means.B: Probabilities of excitatory cells to belong to the driver group,
computed by sampling N = 1000 network realizations with fixed topology but different input. Descendingly sorted by probability. C-E: Statistics of connectivity
of driver cells and a group of 20 randomly sampled non-driver cells.C: Distributions of the strengths of outgoing synapses, D: Inhibitory in-degree, E:
Efficacies of incoming inhibitory synapses. Bars denote average over 1000 trials, whiskers indicate standard deviation.

doi:10.1371/journal.pcbi.1004420.g007
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Inhibitory STDP
What is the role of inhibitory plasticity in our model? Similar to recent theoretical studies [53–
56], inhibitory STDP plays a stabilizing role in our network setup. Yet, inhibitory plasticity fur-
thermore plays a crucial role in the emergence of driver neurons, as we will see in the
following.

In order to assess the effect of inhibitory STDP more closely, we simulated networks with
static I-E synaptic connections of constant weight (see Section 7 in S1 Text). The magnitude of
the constant inhibitory weights was selected to be equal to the mean of the equilibrium distri-
bution of inhibitory weights in the same network with inhibitory STDP. Without inhibitory
STDP, the network still exhibits mostly asynchronous irregular activity, but with a higher
amount of oscillations and with some cells expressing firing rates of up to 100 Hz (see Fig F in
S1 Text). Also, the excitatory population firing rate almost triples (with a mean rate of around
15 Hz) in this case, whereas the inhibitory population firing rate does not increase so drasti-
cally. The excitatory weight distribution is also similar to the case of a network including inhib-
itory STDP (see Fig G in S1 Text), but outgoing strong weights cluster much less on the subset
of neurons that constitutes the driver cell group in the former case (see Fig 2B and Fig U in S1
Text), making their dynamical impact on network dynamics much smaller (see Fig H in S1
Text). We furthermore found that this result does not depend on the actual value of the fixed
inhibitory weight, but that it can be observed even for very weak or strong fixed inhibitory con-
nections. How can this be explained?

The difference between plastic and static inhibitory connections lies in the selective nature
of the Hebbian inhibitory STDP rule [44]. Namely that it increases the synaptic weights con-
verging on cells with higher firing rates more strongly than the ones converging onto cells with
lower firing rates (see Fig 4A). This is the mechanism underlying its stabilizing property. With-
out inhibitory STDP, slightly under-inhibited neurons (that could develop into driver neurons
in the fully plastic network) fire with higher rates and by this alone increase the firing rate of
their postsynaptic partners. This happens on time-scales that are much shorter than the ones
of synaptic plasticity. Thus, neurons that are post-synaptic to under-inhibited cells attain
higher firing rates and start competing with their presynaptic partners over the available pools
of postsynaptic weights limited by the synaptic scaling rule (see Fig 4B). This process, although
also yielding long-tailed distributions, prevents the strong clustering of strong outgoing synap-
ses on single cells (see Fig 2B and Section 13 in S1 Text). The cells with the highest mean outgo-
ing weight also have an impact on network dynamics in this case, but this is much less
pronounced than in the case of a network including inhibitory STDP (see Fig H in S1 Text).

Generality of the model
Do the results depend on parameter tuning? Do the the results generalize to learning rules
other than additive STDP? For this we will refer to the previously described model with addi-
tive excitatory and inhibitory STDP rules and a synaptic normalization at excitatory synapses
as the base model and study variations of it.

STDP learning rates. First of all, we found that in the base model results do not qualita-
tively depend on a tight tuning of the parameters of the plasticity rules employed. We verified
this by simultaneously varying the learning rates of the excitatory and inhibitory STDP rules
while assessing both network dynamics and the dynamics of synaptic weights during conver-
gence to their equilibrium distribution. We found little difference both in network dynamics
and stable weight distributions under co-variation of the learning rates of the two STDP rules
by one order of magnitude into each direction from its initial value (see Methods). Yet, the rela-
tive magnitudes of excitatory and inhibitory STDP learning rates do influence both network
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and weight dynamics: If the quotient of excitatory to inhibitory STDP learning rate becomes
too large, positive feedback results in an over-excitation of the network, leading to patholog-
ically high firing rates and strongly bimodal weight distributions.

Different STDP rules. Apart from the additive STDP rule [26] that we included in the
base model, also classes of partly multiplicative (characterized by additive potentiation and
multiplicative depression [48]) and fully multiplicative STDP rules (where both potentiation
and depression are multiplicative) were proposed and studied previously [51]. How are the
results influenced by different choices for the STDP rules?

Exchanging the additive STDP rule at E-E synapses with either a partly or fully multiplica-
tive one resulted in a network that still expressed long-tailed distributions of firing rates and
long-tailed distributions of the excitatory weights (see Section 12.1, Section 12.2 in S1 Text). In
these settings, the EPSP distribution was much less widespread than the one in the base model
due to the fact that in contrast to a purely additive rule, stronger synapses are subject to much
stronger LTD in these cases. This results in a less pronounced dynamical impact of cell spiking
on their postsynaptic network dynamics compared to the base model, even for the cells with
strongest outgoing mean weights. Yet, we still observed a clustering of the strongest outgoing
synapses on cells with higher firing rates, even to a greater degree than in the case of an additive
STDP rule, see Section 13 in S1 Text. So, although in this setup the dynamical effect of the cells
with the highest outgoing mean weight on network dynamics is much less pronounced due to
the smaller absolute synaptic weights occurring compared to the base model, driver neurons
still emerge.

In contrast to excitatory STDP rules, there is a much greater variety of inhibitory STDP win-
dows [43, 55]. We used a Hebbian rule as inspired by measurements in entorhinal cortex [44]
in the base model, as was done in other modeling studies [54, 56]. If we exchange the inhibitory
STDP rule of the base model with the one proposed in the modeling study [53], we find that
neither the firing rate nor the weight distributions become long-tailed. This is due to the strong
rate-normalizing nature of this rule [53] that also does not allow for driver neurons to emerge.

Different forms of homeostatic plasticity. Unlike the synaptic normalization [59] we
included in the base model, the homeostatic plasticity rule described in [28] acts on slower
time scales. We found that replacing the synaptic normalization rule with a homeostatic plas-
ticity rule that acts on timescales slower than STDP (see Methods) results in a network that
expresses similar weight and firing rate distributions as the base model (see Section 12.3 in S1
Text). As in the base model, we observe a clustering of the strongest outgoing synapses on
driver cells (see Section 13 in S1 Text).

Network topology. To answer the question whether the results are influenced by non-
local aspects of network topology, we also simulated networks with local, distant-depended
connectivity profiles that are often taken as models for cortical connectivity [67]. So far, experi-
mental knowledge (reviewed in [68]) as well as modeling approaches (e.g. [67]) for inhibitory
to excitatory population connectivity, which plays a major role in our analysis, are rather
unspecific. The common agreement is to assume inhibitory connectivity to be local and dense,
with very high connection probability to the nearby neurons [69, 70]. To incorporate these
constraints, we thus considered locally-connected topographic networks with neurons posi-
tioned on the surface of a torus (which allows us to work without boundary conditions). In
accordance with previous studies, excitatory neuron positions were drawn from a uniform dis-
tribution, and inhibitory neurons were either placed on a grid (as in [67]) or also drawn uni-
formly (see Fig 8A, 8B). The networks consisted of 10,000 neurons, and each neuron was
connected to its neighbors with a probability depending on the Euclidean distance between the
cells. Specifically, the connection probability P(a, b) between two cells a and b was chosen to be
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Pða; bÞ ¼ expð�� dða;bÞ2
2s2 Þ, where d(a, b) denotes the Euclidean distance between a and b and σ, �

are shape parameters of the connection profile. To account for the parameters found in experi-
mental studies, we parametrized the torus as [0, 1]2 and chose connection profiles with � = 0.2,
σ = 0.1 for excitatory cells and � = 0.8, σ = 0.05 for inhibitory cells (see Fig 8C). We found that
the networks behave qualitatively like the previously considered random networks: we also
obtained long-tailed firing rate and weight distributions (see Section 11 in S1 Text). We fur-
thermore found driver cells to be scattered uniformly across the population (see Fig 8A, 8B).
As in the base model, sub-networks of driver cells display higher connectivity than groups of
randomly sampled non-driver cells. To assess this, we simulated 10 different networks on the
torus and found 32.11 ± 6.45 (mean ± standard deviation) synaptic connections between the
40 driver cells, whereas the number of connections in a randomly sampled subgroup of 40
non-driver cells was found to be 18.11 ± 5.47. This is a result of the recruitment process
described previously.

Altogether, we can thus say that the phenomena discussed above such as the expression of
long-tailed weight distributions and the emergence of driver neurons and subnetworks of such
are a generic feature, stable even under alternations of the plasticity rules and their parameters.

Discussion
We presented here a model of a balanced state network of spiking neurons in which a set of
biologically plausible plasticity rules such as STDP and homeostatic plasticity leads to stable
effects of self organization.

In contrast to previous studies, structures promoting particular forms of signal propagation
appear in a self-organized way in our model rather than being imprinted statically [71], and are
stable over long periods of time rather than a transient feature [30]. Furthermore, inhibitory
STDP stabilizes network dynamics in our model, keeping it in a biologically plausible regime
and it eliminates the problem of runaway excitation and pathological network states upon the
repeated synchronous stimulation of a group of neurons faced by some previous models [31].

Starting from a homogeneous, Gaussian or uniform configuration, the network expresses
long-tailed distributions of synaptic weights after a transient phase. Synaptic weight distribu-
tions were also found to be long-tailed in cortical networks [6, 7, 72, 73] and such distributions
were shown to facilitate information processing in spiking networks [5, 24].

Fig 8. Topographic network with local connectivity on a torus. A, B: Positions (u, v) of 10,000 cells on a torus (left and right, top and bottom edges are
identified), excitatory cells shown as gray triangles, inhibitory cells as black stars, driver cells in red. A: Uniformly distributed excitatory and inhibitory cells.B:
Inhibitory cells grid-aligned, excitatory cells uniformly distributed.C: Local connectivity profiles of excitatory and inhibitory cells.

doi:10.1371/journal.pcbi.1004420.g008
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Additionally, the network expresses long-tailed distributions of firing rates and a combina-
tion of the two properties of having both long-tailed distributions of firing rates and synaptic
weights is not straightforward [2]. For example, the weights in the SORN model [33] converge
to a long-tailed distribution, but the distribution of firing rates is near-Gaussian. Taken
together, both the long-tailed distributions of synaptic weights and firing rates constitute an
interesting property of the model, in particular as over the last years increasing evidence sur-
faced that long-tailed distributions are ubiquitous in biological neural networks and might play
an important role in brain functioning [10, 12]. Moreover, the network stably expresses asyn-
chronous irregular spiking activity, a regime that is believed to be a good theoretical fit to corti-
cal activity in vivo [34, 35, 37].

A delicate interplay of the excitatory and inhibitory plasticity rules in our model allows a
fraction of the excitatory cells that we call driver neurons to develop predominantly strong out-
going excitatory synapses. We showed that driver cells have a strong impact on the dynamics
of their postsynaptic networks and that by synchronous spiking activity they can even trigger
population bursts. Characteristic properties of driver cells were found to be much higher than
average firing rates caused by reduced inhibitory currents that they receive (leading to a higher
relative excitatory drive) and higher degrees of connectivity in their subnetworks.

As a result, driver neurons express a high degree of “effective embeddedness” [74] within
the network and they can help to bridge the gap between single-cell and network activity, a pos-
sibly relevant dynamical connection, as in vivo even single spikes were shown to matter both
on the level of network dynamics [75] and behaviorally [76].

Local network connectivity played a crucial role in the emergence of driver cells, in particu-
lar local imbalances in the number of converging excitatory and inhibitory synapses. Unfortu-
nately, not much experimental data are available providing information about the (co-)
variance of the number of converging inhibitory and excitatory synapses onto single neurons.
The few studies that we could find assessed variations of synapse numbers between 10% and
30% per cell [77, 78], which would be sufficient to allow for the emergence of driver neurons in
our model. As from a theoretical point of view the determining factor in the emergence of
driver neurons is the quotient of excitatory and inhibitory currents that such cells receive, they
could equivalently emerge by an increased excitatory drive, possibly accompanied by reduced
inhibition, and we expect to be able to selectively form driver cells and assemblies of driver
cells by providing appropriate input patterns to a network. We tested sensitivity of the observed
processes of self-organization to changes in network size. For the cases we tested (10,000 and
20,000 neuron networks), we found no big differences in the results depending on network
size. We leave a more thorough investigation of this question to a follow-up work.

We expect the emerging strong synapses, driver neurons and subnetworks of driver cells to
provide an efficient substrate for the generation of stereotyped recurring patterns of neural
activity, in particular when the network is presented a more meaningful (i.e. structured) input.
Such patterns are a ubiquitous phenomenon observed across different species and brain
regions both in vitro and in vivo [79–82] and are believed to play an important role for both
information transfer and processing in neuronal networks. Moreover, emergent subnetworks
of driver neurons can promote synchrony in the network, an aspect of network dynamics that
has been shown [83, 84] to play an important role in neuronal interactions and the gating of
sensory information.

The observed phenomena of self-organization are not strongly dependent on the initial dis-
tributions of synaptic weights, a tuning of the parameter values of the plasticity rules or even
the class of learning rules employed. For example, the qualitative results remain unaffected if
the time scale of the homeostatic plasticity rule is increased by several orders of magnitude
[28], and strong outgoing weights still cluster on highly active cells when exchanging the
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additive STDP rule at E-E connections with a partly or fully multiplicative one [48, 51]. There-
fore, the observations we report here seem to be an emergent generic feature rather than an
artifact due to certain parameter choices or even specific learning rules. We furthermore expect
phenomenological models of activity-dependent synaptic plasticity that incorporate a rate
dependence of LTP [85, 86], as previously observed experimentally [65], to yield qualitatively
similar or even more pronounced results regarding the emergence of driver neurons as they
favor strong synaptic connections at cells with high firing rates.

The model we present here employs a well-understood network architecture and biologi-
cally plausible plasticity rules as building blocks. It is also minimal in the sense that if any one
of the plasticity rules is excluded, the qualitative results change and the described features of
self-organization, such as the emergence of driver neurons, are not observable. If synaptic scal-
ing for the excitatory connections is excluded, the E-E weight distribution becomes bimodal
and the network tends to be in an overly excited, synchronized state. Finally, if inhibitory
STDP is excluded, this yields much less prominent driver neurons. In this case, despite the fact
that the E-E weight-distribution is long-tailed, clustering of outgoing strong synapses is much
weaker due to increased competition between the cells. This is due to the fact that both homeo-
static plasticity and inhibitory STDP influence synaptic competition in our model, albeit on
different levels. Whereas homeostatic plasticity introduces competition between synapses,
inhibitory plasticity decreases it between neurons, allowing driver cells to predominantly form
strong outgoing connections by suppressing cells postsynaptic to driver neurons. This is a gen-
eral requirement for development of driver neurons: there should be competition on the level
of single synapses, but not too much competition on the neuronal level, and there should be
some amount of inhomogeneity in the network structure to seed the symmetry breaking.
Those requirement are fulfilled in different settings, most easily in the network we described in
this article that is equipped with additive STDP, inhibitory STDP and synaptic scaling.

Despite its simplicity, our model is supported by a multitude of recent experimental find-
ings. For example, studies investigating the architecture of cortical microcircuits [1, 3, 7]
already constitute some experimental verification of certain aspects of our findings. In [1], the
excitatory network architecture of the C2 barrel column in juvenile (P18–21) mice was found
to express rare large-amplitude EPSPs at excitatory cells, and those were hypothesized to play
an important role for the dynamics and information processing in the network by providing a
substrate for the emergence of strongly connected functional cell assemblies. In our model,
synaptic plasticity leads to a similar situation in which the strong outgoing synapses at driver
neurons allow them to take strong influence on both their postsynaptic networks and on the
whole network by means of forming strongly connected subnetworks of driver cells. Moreover,
the combination of higher degrees of connectivity accompanied by EPSP distributions with
higher means as found in the emerging driver subnetworks is in line with experimental data
from cortical networks in the somatosensory cortex of juvenile (P14–16) rats where mean
EPSP amplitudes were shown [7] to increase with the degree of synaptic connectivity within
cell groups.

Another recent experimental study [3] finds a strongly interconnected subnetwork of highly
active fosGFP+ excitatory neurons in the barrel cortex of juvenile (P13–23) mice that is stable
over longer periods of time. Rather than being a cause of cell-intrinsic electrophysiological
properties, the elevated firing rates were found to be caused by a combination of decreased
inhibitory and increased excitatory input to those cells due to network activity [3], a similar sit-
uation as observed for the driver neurons in our model. Moreover, the fosGFP+ neurons were
found to be more effective at driving recurrent network activity than their fosGFP− partners
that are characterized by lower activity. At the same time, fosGFP+ cells were shown to be pref-
erentially active in early periods of spontaneous activity, a property shared with leader neurons.
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A speculative, but intriguing thought is to regard the study [3] as the first experimental investi-
gation of leader neurons in non-dissociated cultures, that, if the hypothesis was true, would
provide further experimental evidence that leader neurons possess many characteristic proper-
ties (higher firing rates, lower inhibition, ability to drive network activity) of the driver cells in
our model.

Moreover, driver cells in our model share many properties with leader neurons that were
found in experimental studies of a wide range of different dissociated hippocampal and cortical
cultures obtained from embryonic, newborn (<24h) and juvenile (P16–17) rats [16–20], mak-
ing them a seemingly ubiquitous phenomenon of developing neuronal networks. Yet, we want
to stress that leader neurons so far were only investigated in cultures expressing bursty activity
with longer intermittent periods of quiescence, whereas our model expresses asynchronous
irregular activity. The emerging subnetworks of driver cells in our model show dynamical
properties similar to functional assemblies of leader neurons termed “primal circuits” [19] and
“burst initiation zones” [17] (in the case of 1D cultures) and are also stable over long periods of
time [19]. Specifically, leader neurons were found to have higher than average spiking activity
[19] and to form functionally well connected circuits that collectively lead most of the observed
network bursts [18, 19], similar to driver neurons in our model. Moreover, recent experimental
studies [18, 20] on leader neurons show that they do not just passively lead population spikes
but are also able to trigger them, akin to our model in which synchronous spiking activity in
the driver subnetwork can trigger network bursts. In particular, subnetworks of leader neurons
were hypothesized to provide an explanation of the observed patterns of spontaneous and
evoked activity [18] and in our model we find exactly such subnetworks of driver neurons
emerging, albeit in a likely much more simplified form than to be expected in biological
networks.

Since our model enables the investigation of the interplay between network dynamics and
structure, it allows us to make predictions of structural properties of neural networks that were
not experimentally investigated so far, as well as raising further questions that could be tested
experimentally. Regarding leader neurons, our model predicts those cells to receive reduced
inhibition. Apart from the previously discussed experimental support for this prediction,
another piece of evidence is given by the finding that burst initiation zones in 1D networks of
developing cultures of cortical neurons (that correspond to leader neurons in the 2D case)
were found to have an almost 3-fold reduced density of inhibitory neurons compared to adja-
cent areas [17], an effect similar to the reduced inhibition of driver neurons that we found in
our model. Whether the same also holds for leader neurons in 2D cultures remains to be inves-
tigated. Another observation following from our model is that decreasing the amount of inhibi-
tion present in the network can suppress the emergence of driver neurons. It would be
interesting to see how this relates to the experimental findings showing that groups of leader
neurons become unstable and express a large turnover in memberships when the culture is
subject to a blockage of GABAA receptors [17, 19].

Moreover, a recent study [11] recording in vivo from hippocampal neurons in rats finds
both a long-tailed distribution of firing rates with the activity of each cells being similar across
a multitude of different brain states, and at the same time strong evidence for a long-tailed dis-
tribution of synaptic weights, assessed via spike transmission probabilities. This is related to an
additional question raised by our model, namely whether further experimental evidence can be
found for the existence of cells and (functional) subnetworks of such cells that constitute both
the long tail of the distributions of firing rates and synaptic weights. To answer this question,
both firing rates and synaptic connectivity patterns of a given neural population have to be
known, a challenging and interesting question for future experimental work.
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Conclusion
In this paper we examined the self-organization of inhomogeneous synaptic strengths in bal-
anced networks. Beyond the development of long-tailed weight and rate distributions, we
observed a clustering of the strongest outgoing synapses on a few neurons that we call driver
neurons. This clustering stays qualitatively the same for different modifications of the STDP
rules, homeostatic regulations, and network topology. Our analytic results demonstrate how
the network enhances small initial inhomogeneities by a combination of three plasticity rules:
excitatory STDP, inhibitory STDP, and homeostatic plasticity. We furthermore showed that
inhibitory STDP can serve not only the purpose of circuit stabilization, but also how it might
be central for structure formation in networks.

Methods
We study a classical random, balanced state network of leaky integrate and fire neurons with
current-based synapses [34, 35, 71]. We simulated the network using the Brian simulator soft-
ware [87].

Neuron model
The sub-threshold membrane potential of each LIF neuron obeys

tm
dV
dt

¼ �ðV � ELÞ þ Isyne � Isyni ;

where τm = 20 ms is the membrane time constant, EL = −60 mV denotes a leak term and Isyne ,
Isyni denote excitatory and inhibitory synaptic currents, respectively. Whenever the membrane
potential crosses a spiking threshold Vthres = −50 mV, an action potential is generated and the
membrane potential is reset to the resting potential Vreset = −60 mV, where it remains clamped
for a refractory period τref = 2 ms.

The excitatory synaptic currents are given by

Isyne ¼ wec
norm
e ge;

where ge denotes the presynaptic spike train that is convolved with a synaptic kernel function,
cnorme ¼ 1mV is a normalizing factor and we denotes the synaptic weight normalized to values
[0, wmax] with wmax

e ¼ 20, and an initial weight we = 1.
The negative synaptic current Isyni is defined analogously with cnormi ¼ �9mV, wmax

i ¼ 5,
and an initial synaptic weight wi = 1.

Synaptic connections are current-based with exponential kernel functions te
dge
dt
¼ �ge and

ti
dgi
dt
¼ �gi. Here, τe and τi denote excitatory and inhibitory synaptic time constants, respec-

tively. They are chosen as τe = 5 ms and τi = 10 ms, in accordance with fast-acting excitatory
and inhibitory neurotransmitters.

Synaptic parameters are chosen so that effective EPSP and IPSP amplitudes are comparable
with experimental data [88]. EPSP amplitudes take values between 0 mV and 2.25 mV (corre-
sponding to a synaptic weight of wmax

e ¼ 20), with 0.16 mV corresponding to an excitatory syn-
apse with weight w = 1. IPSP amplitudes take values between 0 mV and −11.23 mV
(corresponding to a synaptic weight of wmax

i ¼ 5), with −2.25 mV corresponding to an inhibi-
tory synapse with weight w = 1.
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Network architecture
We consider a random, balanced state network of leaky integrate and fire neurons consisting of
N = 5000 cells of which 4000 are excitatory (E) and 1000 inhibitory (I). The network is fully
recurrent with all four connection types E-E, E-I, I-E and I-I present. The probability of a syn-
aptic connection between any two neurons is p = 0.02, a value chosen as a compromise between
the higher connection probabilities found for neighboring cortical neurons and the lower val-
ues for more distant cells [6]. Synaptic connections are current-based with an exponential
decay and modeled to be in accordance with fast acting glutamatergic and GABAergic neuro-
transmitters. In order to ease simulation and analysis we restrict our model to have mono-syn-
aptic connections between pairs of cells, aggregating possibly several synaptic contacts of one
pair of cells into one postsynaptic potential (PSP).

The E-E (STDP+homeostatic plasticity) and I-E (inhibitory STDP) synaptic connections
are dynamic, whereas the I-E and I-I ones are static (see Fig A in S1 Text).

Synaptic plasticity rules
STDP in our model is implemented in a standard on-line fashion with exponential kernels and
all-to-all spike pairings so that the weight update for a synapse connecting a pre- and a post-
synaptic cell is given by

DwðwÞ ¼
(AþðwÞ exp ð�ðtpost � tpreÞ=tþÞ if tpost � tpre > 0

�A�ðwÞ exp ððtpost � tpreÞ=t�Þ if tpost � tpre � 0
;

where tpre and tpost denote pre- and postsynaptic spike times.
For excitatory-excitatory synapses, we consider either additive (A+(w) and A−(w) constant),

partly multiplicative (A+(w) constant) or fully multiplicative STDP rules, see S1 Text for a
description of the different rules. For inhibitory-excitatory synapses we only consider additive
rules as in this case additive and multiplicative rules are equivalent [54].

For both excitatory and inhibitory connections, time constants were set to τ+ = τ− = 20 ms.
For additive excitatory STDP, the amplitudes of LTP and LTD were chosen as A+ = 10−3 and
A− = 1.05A+, respectively, resulting in a negative integral of the STDP window. For the case of
partly multiplicative and multiplicative STDP at excitatory synapses we chose A+ = A− = 10−3.
For inhibitory connections, we set A− = 10−3 and A+ = 4A− as motivated by experimental find-
ings [44] and yielding a positive integral of the STDP window [54]. In the simulations, A+ and
A− are multiplied with the respective maximal weight for additive rules to obtain their effective
values.

Like the excitatory STDP rule, inhibitory STDP [44] in our model is Hebbian, increasing the
synaptic weight if the postsynaptic cell fires within τ+ ms after a presynaptic spike, and decreas-
ing it when a presynaptic spike occurs within τ−ms after a postsynaptic spike.

We verified that the results do not strongly depend on the learning rates of the STDP rules
by varying them one order of magnitude into each direction. This influences the convergence
speed of the synaptic weights to the equilibrium distribution, but not the shape of the distribu-
tion itself.

Homeostatic plasticity is implemented in form of synaptic weight normalization acting at
the postsynaptic site of excitatory-excitatory connections. The normalization rule is defined by

wscaledðiÞ :¼ 1P
j w

in
j ðiÞ

deg in
EEðiÞwinðiÞ;

where for an excitatory cell i, win(i) denotes the vector of incoming excitatory weights with
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components win
j ðiÞ and deginEEðiÞ denotes the excitatory in-degree. In the simulations, the above

normalization of weights is applied every 100 ms, replacing the weight vector at each cell with
its normalized version.

We note that for long simulation times synaptic normalization is equivalent to synaptic scal-
ing, assuming equal mean rates of the presynaptic cells and slow time-scales of plasticity. Yet,
we also performed simulations of the network with synaptic scaling mechanisms acting on a
slower timescale according to the following rule, analyzed for rate-based models as in [62]:

dw
dt

¼ �gðn� n0Þw2:

Here, ν denotes the firing rate of the cell, ν0 a target rate and γ a learning rate. For the simu-
lations we chose γ = 10−6 and ν0 = 0 Hz. A scaling step was performed each 50 ms during the
simulation and firing rates were computed using a sliding window of length 100 s. We observed
that these networks show qualitatively the same behavior as the ones with the synaptic normal-
ization rule, see Section 12.3 in S1 Text.

Simulation protocol
At the start of the simulation, the membrane potentials of the neurons were drawn from a uni-
form distribution between Vrest and Vthres. Subsequently, the network was driven by a constant
depolarization of each cell, sufficient to depolarize each cell by 11 mV. This input drove the
network to the asynchronous irregular (AI) regime of activity with a mean population firing
rate close to 5 Hz. We chose a constant depolarization as input since we wanted to study self-
organization in the network brought about by its own dynamics, rather than some structure
present in the input. Additionally, this case was previously studied in [71], where also some
properties of the static network were assessed, such as the expression of asynchronous irregular
spiking activity.

The distribution of firing rates and interspike intervals (ISIs) in the network is long-tailed
with few cells firing at rates up to 30 Hz and many at low rates below 0.1 Hz. As expected, the
mean value of the distribution of coefficients of variation of the ISIs is close to 1, indicating
irregular spiking activity of the network.

In an alternative setup, we tested a network in which each cell is stimulated by a Poisson
spike train of the same mean intensity and noted that this setup results in qualitatively the
same results.

We started with a network in which initially all synaptic weights have a constant value of 1
for all four types of synaptic connections between excitatory and inhibitory cells and then acti-
vate the synaptic plasticity rules. We also simulated networks with initially Gaussian and uni-
form weight distributions and obtained qualitatively identical results. After a transient phase
lasting around 5 hours of network activity, the weights stabilized to their new long-tailed
distributions.

We observed that during this transient phase the network rests in the asynchronous irregu-
lar regime of activity. No significant difference in the mean firing rate of the different popula-
tions and no apparent visual difference in raster plots before and after plasticity can be
observed, see Fig B in S1 Text.

We furthermore verified that the obtained results do not strongly depend on the learning
rates chosen by systematically varying them around the chosen value, increasing and decreas-
ing them by up to one order of magnitude. This change in parameters influenced the speed of
convergence of the synaptic weights to their equilibrium distributions, but not the shape of the
distributions itself, while at the same time taking no influence on network dynamics.
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Analytic results
We studied analytically tractable reduced models that enable us to calculate STDP weight
updates in a mean-field fashion and that allow us to give an explanation of the observed pro-
cesses of self-organization in the network.

Steady state inhibitory synaptic weights. Consider a reduced model consisting of two
cells that receive Poisson input and that are synaptically connected via an inhibitory delta syn-
apse (i.e. a synapse where each postsynaptic potential is represented by a delta peak) subject to
inhibitory STDP. For simplicity of the analysis assume an integrate-and-fire model in the fol-
lowing and that only the nearest neighbor spikes influence STDP.

In this model, assuming small input, the rise of the membrane potential induced by the
input is close to linear and the average delay time dw caused in the postsynaptic spiking by a
presynaptic inhibitory spike with connection strength w can be calculated as

dwðw; n0Þ ¼
w

n0ðVthres � VrestÞ
; ð1Þ

where ν0 denotes the firing rate of the postsynaptic cell without the inhibitory connection.
Denote by Tisi = 1/ν0 the average inter-spike-interval (ISI) of the postsynaptic cell without
inhibitory connection. For the following analysis we ignore the variability in the ISIs, using as
approximation Tisi. We can now compute the average impact of the nearest preceding and suc-
ceeding spike on the synaptic weight w as

hDwi ¼ 1

Tisi

Z Tisi

0

Aþe
�Tisi�tþdw

t dt � 1

Tisi

Z Tisi

0

A�e
�t
tdt

¼ n0t Aþ e
� w
n0tðVthres�VrestÞ � e

� wþVthres�Vrest
n0tðVthres�VrestÞ

� �
þ A� e�

1
n0t � 1

� �� �

¼ n0t 1� e�
1
n0t

� �
Aþe

� w
n0tðVthres�VrestÞ � A�

� �
;

where τ denotes the time constant of the STDP rule. To find the stationary weight we now
solve hΔw(w, ν0)i = 0 for w and obtain the stationary weight wstat(ν0) as a function of the initial
firing rate ν0. A solution can be obtained in closed form as

wstatðn0Þ ¼ n0tðVthres � VrestÞ log
Aþ
A�

� �
; ð2Þ

see Section 14 in S1 Text for a detailed derivation of Eq 2.
Note that the stationary weight depends only on the quotient of A+ and A−, in our case A+/

A− = 4. The analytic solution provides a very good fit to the data, Fig 9. Differences observed
for large rates are due to the restriction on the maximal inhibitory weight. To find the actual
rate ν of the postsynaptic neuron, taking into account the inhibitory synapse, we combine Eqs
(2) and (1)

nðn0Þ ¼
n0

1þ ninhdwðwstatðn0Þ; n0Þ
¼ n0

1þ tninh log ðAþ=A�Þ
;

where νinh is the rate of the inhibitory neuron.
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If we start driving the postsynaptic neuron stronger, the inhibitory weight will increase, but
not as much as needed to compensate the increased drive,

0 < nðn0 þ Dn0Þ � nðn0Þ ¼
Dn0

1þ tninh log ðAþ=A�ÞÞ
< Dn0:

Average impact of STDP on a synapse. In our model, excitatory STDP parameters are
selected such that depression slightly dominates facilitation. Thus, we expect that very weak
synapses will get weaker over time. At the same time, a presynaptic spike of an excitatory neu-
ron shifts the next postsynaptic spike backward in time and thus increases the positive contri-
butions of STDP, allowing the average contribution to increase above 0. Here, we study a mean
field model with two cells A and B, both driven by independent Poisson inputs with the same
rate and connected by a delta synapse of strength w. We want to find an expression for the
average synaptic change Δ as a function of w. Given the parameters of the input, it is possible
to compute the rates, ν = νA = νB and membrane potential distributions P(V) of both cells [35],
see Section 6 in S1 Text.

For simplicity, we again only consider nearest spikes STDP interactions here. To approxi-
mate Δw, it is enough to consider triplets of spikes: one presynaptic spike between two postsyn-
aptic ones. Let neuron B fire at times tB1 and t

B
2 and neuron A fire at time tA1 such that

tB1 < tA1 < tB2 , see Fig 10. We denote by STDP+(Δt) = A+exp(−Δt/τ+) and STDP
−(Δt) = −A−exp

(Δt/τ−) the positive and negative parts of STDP-kernel, respectively, where Δt denotes the
time-difference between spikes of the postsynaptic and the presynaptic neuron. Consider in
particular the inter-spike interval of cell B given by T ¼ tB2 � tB1 . Ignoring the impact of a pre-
synaptic spike on the membrane potential, we can compute:

DwðTÞ ¼
Z T

0

STDPþðT � tÞ � STDP�ð�tÞdt: ð3Þ

Fig 9. Stationary weight of a plastic inhibitory synapse after plasticity. Average stationary weight after
100 seconds of simulation of a 2-neuron model (blue) and its standard deviation (green) as a function of initial
postsynaptic firing rate. Analytic solution for the stationary weight (magenta).

doi:10.1371/journal.pcbi.1004420.g009

Self-organization in Balanced Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004420 September 3, 2015 24 / 30



Additionally, the presynaptic spike leads to a time-shift in the firing of the postsynaptic neu-
ron. To compute the average time-shift DtB2 we use the change in the rate ΔrB(w) of the postsyn-
aptic neuron expressed as a function of the synaptic weight:

DtB2 ðwÞ ¼
DrBðwÞ

rBðrB þ DrBðwÞÞ :

Combining this equation with Eq 3, we can obtain a better approximation of Δw(T)

DwðTÞ ¼
Z T�DtB

2

DtB
2

STDPþðT � t � DtB2 Þ � STDP�ð�tÞdt þ
Z DtB

2

0

STDPþðT � tÞ � STDP�ð�tÞdt; ð4Þ

where here we did not consider the interval t 2 ðT � DtB2 ;T�, that corresponds to cases where a pre-
synaptic spike could trigger the postsynaptic neuron to fire. Now we need to take into account a distri-

bution of inter-spikes-intervals T. For a perfect Poisson spike train the inter-spike intervals would be

exponentially distributed, but for Poisson-driven leaky integrate-and-fire neurons the inter-spike-

interval distribution is better approximated by an inverse Gaussian distribution [89] T* IG(μ, λ),

where μ = 1/ν.

Finally, a presynaptic spike can directly trigger a postsynaptic spike. The probability of such
an event is easy to compute from the distribution of membrane potentials:

PfireðwÞ ¼
Z V thr

V thr�w

PðVÞdV : ð5Þ

see Section 6 in S1 Text.

Fig 10. Average change in synaptic weight due to a STDP update depending on the initial synaptic strength. A: Sketch of the three-spikes scenario,
spikes of the postsynaptic neuron are shown in blue, spikes of the presynaptic neuron in red. B: Average change in synaptic strength Δw depending on the
initial synaptic strengthw (blue curve), standard deviation based on 10 simulations of 500 seconds (green curve) and solution of Eq 6 (magenta curve).

doi:10.1371/journal.pcbi.1004420.g010
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Combining the previous computations, we obtain the estimation of Δw as:

Dw ¼
Z 1

0

PðTÞ
 Z T�DtB

2

DtB
2

STDPþðT � t � DtB2 Þ � STDP�ð�tÞdt

þ
Z DtB

2

0

STDPþðT � tÞ � STDP�ð�tÞdt
!
dT þ PfireðwÞSTDPþðtsynÞ; ð6Þ

where τsyn denotes the synaptic time delay.
To check the accuracy of Eq 6, we simulated a two-neuron model. Both neurons are driven

by Poisson input from 1650 delta synapses with a rate of 1 Hz and connection strengths of 0.5
mV. We found that ΔrB(w) varies linearly with w, and use the parameters of the linear fit from
the data to obtain ΔrB(w). The parameter λ of the inverse Gaussian distribution for inter-spikes
intervals we found not to influence the results of the estimation of Δw, at least in the interval
0.5/ν< λ< 1/ν. Using Eq 6, we obtain a good fit to the simulated data, see Fig 10.

Supporting Information
S1 Text. Appendix containing further details and derivation of analytical results.
(PDF)
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