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Tightness of a triangulated manifold is a topological condition,
roughly meaning that any simplex-wise linear embedding of
the triangulation into Euclidean space is “as convex as possible”.
It can thus be understood as a generalization of the concept of
convexity. In even dimensions, super-neighborliness is known to
be a purely combinatorial condition which implies the tightness of
a triangulation. Here, we present other sufficient and purely com-
binatorial conditions which can be applied to the odd-dimensional
case as well. One of the conditions is that all vertex links are
stacked spheres, which implies that the triangulation is in Walkup’s
class K(d). We show that in any dimension d � 4, tight-neighborly
triangulations as defined by Lutz, Sulanke and Swartz are tight.
Furthermore, triangulations with k-stacked vertex links and the
centrally symmetric case are discussed.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and results

Tightness is a notion developed in the field of differential geometry as the equality of the (normal-
ized) total absolute curvature of a submanifold with the lower bound sum of the Betti numbers [11,43].
It was first studied by Alexandrov [1], Milnor [50], Chern and Lashof [18] and Kuiper [42] and later
extended to the polyhedral case by Banchoff [9], Kuiper [43] and Kühnel [37].

From a geometrical point of view, tightness can be understood as a generalization of the concept
of convexity that applies to objects other than topological balls and their boundary manifolds since
it roughly means that an embedding of a submanifold is “as convex as possible” according to its
topology. The usual definition is the following.
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Definition 1.1 (Tightness). (See [37,43].) Let F be a field. An embedding M → E
N of a compact

manifold is called k-tight with respect to F if for any open or closed half-space h ⊂ E N the induced
homomorphism

Hi(M ∩ h;F) → Hi(M;F)

is injective for all i � k. M is called F-tight if it is k-tight for all k. The standard choice for the field of
coefficients is F2 and an F2-tight embedding is called tight.

With regard to PL embeddings of PL manifolds, the tightness of combinatorial manifolds can also be
defined via a purely combinatorial condition as follows. For an introduction to PL topology see [59],
for more recent developments in the field see [21,45].

Definition 1.2 (Combinatorial manifold, combinatorial tightness). (See [37].)

(i) A simplicial complex K that has a topological manifold as its underlying set |K | is called trian-
gulated manifold. K is called combinatorial manifold of dimension d if all vertex links of K are PL
(d − 1)-spheres, where a PL (d − 1)-sphere is a triangulation of the (d − 1)-sphere that carries a
standard PL structure.

(ii) Let F be a field. A combinatorial manifold K on n vertices is called (k-)tight w.r.t. F if its canonical
embedding

K ⊂ �n−1 ⊂ En−1

is (k-)tight w.r.t. F, where �n−1 denotes the (n − 1)-dimensional simplex.

In dimension d = 2 the following are equivalent for a triangulated surface S on n vertices: (i) S has
a complete edge graph Kn , (ii) S appears as a so-called regular case in Heawood’s Map Color Theo-
rem [29,58], cf. [37, Chapter 2C] and (iii) the induced piecewise linear embedding of S into Euclidean
(n − 1)-space has the two-piece property [10], and it is tight [32], [37, Chapter 2D].

Kühnel investigated the tightness of combinatorial triangulations of manifolds also in higher di-
mensions and codimensions, see [36], [37, Chapter 4]. It turned out that the tightness of a combinato-
rial triangulation is closely related to the concept of Hamiltonicity of a polyhedral complexes (see [35,
37]): A subcomplex A of a polyhedral complex K is called k-Hamiltonian1 if A contains the full k-
dimensional skeleton of K . This generalization of the notion of a Hamiltonian circuit in a graph seems
to be due to Schulz [60,61]. A Hamiltonian circuit then becomes a special case of a 0-Hamiltonian
subcomplex of a 1-dimensional graph or of a higher-dimensional complex [26].

A triangulated 2k-manifold that is a k-Hamiltonian subcomplex of the boundary complex of some
higher-dimensional simplex is a tight triangulation as Kühnel [37, Chapter 4] showed. Such a triangu-
lation is also called (k + 1)-neighborly triangulation since any k + 1 vertices in a k-dimensional simplex
are common neighbors. Moreover, (k + 1)-neighborly triangulations of 2k-manifolds are also referred
to as super-neighborly triangulations — in analogy with neighborly polytopes the boundary complex of
a (2k + 1)-polytope can be at most k-neighborly unless it is a simplex. Notice here that combinatorial
2k-manifolds can go beyond k-neighborliness, depending on their topology.

With the simplex as ambient polytope there exist generalized Heawood inequalities in even di-
mensions d � 4 that were first conjectured by Kühnel [36,37], almost completely proved in [53] by
Novik and proved by Novik and Swartz in [55]. As in the 2-dimensional case, the k-Hamiltonian tri-
angulations of 2k-manifolds here appear as regular cases of the generalized Heawood inequalities.

There also exist generalized Heawood inequalities for k-Hamiltonian subcomplexes of cross poly-
topes that were first conjectured by Sparla [63] and almost completely proved by Novik in [54]. The
subcomplexes appearing as regular cases in these inequalities admit a tight embedding into a higher-
dimensional cross polytope and are also referred to as nearly (k + 1)-neighborly as they contain all

1 This is not to be confused with the notion of a k-Hamiltonian graph, see [17].
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i-simplices, i � k, not containing one of the diagonals of the cross polytope (i.e., they are “neighborly
except for the diagonals of the cross polytope”).

For d = 2, a regular case of Heawood’s inequality corresponds to a triangulation of an abstract
surface (cf. [58]). Ringel [57] and Jungerman and Ringel [30] showed that all of the infinitely many
regular cases of Heawood’s inequality distinct from the Klein bottle do occur. As any such case yields
a tight triangulation (see [32]), there are infinitely many tight triangulations of surfaces.

In contrast, in dimensions d � 3 there only exist a finite number of known examples of tight
triangulations (see [41] for a census), apart from the trivial case of the boundary of a simplex and an
infinite series of triangulations of sphere bundles over the circle due to Kühnel [37, 5B], [33].

Especially in odd dimensions it seems to be hard to give combinatorial conditions for the tightness
of a triangulation and such conditions were not known so far. This work presents one such condition
holding in any dimension d � 4.

In the course of proving the Lower Bound Conjecture (LBC) for 3- and 4-manifolds,
D.W. Walkup [65] defined a class K(d) of “certain especially simple” [65, p. 1] combinatorial mani-
folds as the set of all combinatorial d-manifolds that only have stacked (d − 1)-spheres as vertex links
as defined below.

Definition 1.3 (Stacked polytope, stacked sphere). (See [65].)

(i) A simplex is a stacked polytope and each polytope obtained from a stacked polytope by adding a
pyramid over one of its facets is again stacked.

(ii) A triangulation of the d-sphere Sd is called stacked d-sphere if it is combinatorially isomorphic to
the boundary complex of a stacked (d + 1)-polytope.

Thus, a stacked d-sphere can be understood as the combinatorial manifold obtained from the
boundary of the (d + 1)-simplex by successive stellar subdivisions of facets of the boundary complex
∂�d+1 of the (d + 1)-simplex (i.e., by successively subdividing facets of a complex Ki , i = 0,1,2, . . . ,
by inner vertices, where K0 = ∂�d+1). In this work we will give combinatorial conditions for the
tightness of members of K(d) holding in all dimensions d � 4. The main results of this paper are the
following:

In Theorem 2.5 we show that any polar Morse function subject to a condition on the number of
critical points of even and odd indices is a perfect function. This can be understood as a combinatorial
analogon to Morse’s lacunary principle, see Remark 2.6.

This result is used in Theorem 3.2 in which it is shown that every 2-neighborly member of K(d)

is a tight triangulation for d � 4. Thus, all tight-neighborly triangulations as defined in [46] are tight
for d � 4 (see Section 4).

The paper is organized as follows.
Section 2 begins with a short introduction to polyhedral Morse theory giving rise to a tightness

definition of a triangulation in terms of (polyhedral) Morse theory, followed by the investigation on
a certain family of perfect Morse functions. The latter functions can be used to give a combinatorial
condition for the tightness of odd-dimensional combinatorial manifolds in terms of properties of the
vertex links of such manifolds.

In Section 3, the tightness of members of K(d) is discussed, followed by a discussion of the
tightness of tight-neighborly triangulations for d � 4 in Section 4. Both sections include examples
of triangulations for which the stated theorems hold.

In Section 5, the classes Kk(d) of combinatorial manifolds are introduced as a generalization of
Walkup’s class K(d) and examples of manifolds in these classes are presented. Furthermore, an ana-
logue of Walkup’s theorem [65, Theorem 5], [37, Proposition 7.2] for d = 6 is proved, assuming the
validity of the Generalized Lower Bound Conjecture 5.11. Finally, Section 6 focuses on subcomplexes
of cross polytopes that lie in the class Kk(d) for some k. Here, an example of a centrally symmetric
triangulation of S4 × S2 ∈ K2(6) as a 2-Hamiltonian subcomplex of the 8-dimensional cross polytope
is given. This triangulation is part of a conjectured series of triangulations of sphere products as tight
subcomplexes of cross polytopes.
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2. Polar Morse functions and tightness

Apart from the homological definition given in Definitions 1.1 and 1.2, tightness can also be defined
in the language of Morse theory in a natural way: On the one hand, the total absolute curvature of
a smooth immersion X equals the average number of critical points of any non-degenerate height
function on X in a suitable normalization. On the other hand, the Morse inequality shows that the
normalized total absolute curvature of a compact smooth manifold M is bounded below by the rank
of the total homology H∗(M) with respect to any field of coefficients, where tightness is equivalent
to the case of equality in this bound, see [41].

As an extension to classical Morse theory (see [49] for an introduction to the field), Kühnel [34,37]
developed what one might refer to as a “polyhedral Morse theory”. Note that in this theory many,
but not all concepts carry over from the smooth to the polyhedral case, see the survey articles [43]
and [11] for a comparison of the two cases.

A discrete analogon to the Morse functions in classical Morse theory is defined in the polyhedral
case as follows.

Definition 2.1 (rsl functions). (See [34,37].) Let M be a combinatorial manifold of dimension d. A func-
tion f : M → R is called regular simplex-wise linear (rsl, for short), if f (v) �= f (v ′) for any two vertices
v �= v ′ of M and f is linear when restricted to any simplex of M . Regular simplex-wise linear func-
tions are sometimes also referred to as Morse functions.

Notice that an rsl function is uniquely determined by its value on the set of vertices and that only
vertices can be critical points of f in the sense of Morse theory. With this definition at hand one can
define critical points and level sets of these Morse functions as in classical Morse theory.

Definition 2.2 (Critical vertices). (See [34,37].) Let F be a field, M be a combinatorial d-manifold and
let f be an rsl function on M . A vertex v ∈ M is called critical of index k and multiplicity m with respect
to f , if

dimF Hk
(
Mv , Mv\{v};F

) = m > 0,

where Mv := {x ∈ M: f (x) � f (v)} and H∗ denotes an appropriate homology theory with coefficients
in F. The number of critical points of f of index i (with multiplicity) is

μi( f ;F) :=
∑

v∈V (M)

dimF Hi
(
Mv , Mv\{v};F

)
.

In the following we will be interested in special kinds of Morse functions, so-called polar Morse
functions. This term was coined by Morse, see [52].

Definition 2.3 (Polar Morse function). Let f be a Morse function that only has one critical point of
index 0 and of index d each for a given (necessarily connected) d-manifold. Then f is called polar
Morse function.

Note that for a 2-neighborly combinatorial manifold clearly all rsl functions are polar. As in the
classical theory, there hold Morse relations as follows.

Theorem 2.4 (Morse relations). (See [34,37].) Let F be a field, M a combinatorial manifold of dimension d
and f an rsl function on M. Then the following hold, where βi(M;F) := dimF Hi(M;F) denotes the i-th Betti
number:

(i) μi( f ;F) � βi(M;F) for all i,
(ii)

∑d
i=0(−1)iμi( f ;F) = χ(M) = ∑d

i=0(−1)iβi(M;F),
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(iii) M is (k-)tight with respect to F if and only if μi( f ;F) = βi(M;F) for every rsl function f and for all
0 � i � d (for all 0 � i � k).

Functions satisfying equality in (i) for all i � k are called k-tight functions. A function f that satisfies
equality in (i) for all i is usually referred to as perfect or tight function, cf. [13].

Note that a submanifold M of Ed is tight in the sense of Definition 1.1 if and only if every Morse
function on M is a tight function, see [34,37].

As already mentioned in Section 1, there exist quite a few examples of triangulations in even
dimensions that are known to be tight, whereas “for odd-dimensional manifolds it seems to be dif-
ficult to transform the tightness of a polyhedral embedding into a simple combinatorial condition”,
as Kühnel [37, Chapter 5] observed. Consequently, there are few examples of triangulations of odd-
dimensional manifolds that are known to be tight apart from the sporadic triangulations in [41] and
Kühnel’s infinite series of Sd−1

� S1 for odd d � 3.
It is a well-known fact, that in even dimensions a Morse function which only has critical points of

even indices is a tight function, cf. [13]. This follows directly from the Morse relations, i.e., the fact
that

∑
i(−1)iμi = χ(M) holds for any Morse function on a manifold M and the fact that μi � βi . In

odd dimensions on the other hand, argumenting in this way is impossible as we always have μ0 � 1
and the alternating sum allows the critical points to cancel out each other. What will be shown in
Theorem 2.5 is that at least for a certain family of Morse functions the tightness of its members can
readily be determined in arbitrary dimensions d � 3.

Theorem 2.5. Let F be any field, d � 3 and f a polar Morse function on a combinatorial F-orientable d-
manifold M such that the number of critical points of f (counted with multiplicity) satisfies

μd−i( f ;F) = μi( f ;F) =
{

0 for even 2 � i � 	 d
2 
,

ki for odd 1 � i � 	 d
2 
,

where ki � 0 for arbitrary d and moreover k	d/2
 = k�d/2� = 0, if d is odd. Then f is a tight function.

Proof. Note that as f is polar, M necessarily is connected and orientable. If d = 3, μ0 = μ3 = 1 and
μ1 = μ2 = 0, and the statement follows immediately. Thus, let us only consider the case d � 4 from
now on. Assume that the vertices v1, . . . , vn of M are ordered by their f -values, f (v1) < f (v2) <

· · · < f (vn). In the long exact sequence for the relative homology

· · · → Hi+1
(
Mv , Mv\{v}) → Hi

(
Mv\{v}) ι∗i−→ Hi(Mv)

→ Hi
(
Mv , Mv\{v}) → Hi−1

(
Mv\{v}) → ·· · (2.1)

the tightness of f is equivalent to the injectivity of the inclusion map ι∗i for all i and all v ∈ V (M).
The injectivity of ι∗i means that for any fixed j = 1, . . . ,n, the homology Hi(Mv j , Mv j−1 ) (where
Mv0 = ∅) persists up to the maximal level Hi(Mvn ) = Hi(M) and is mapped injectively from level
v j to level v j+1. This obviously is equivalent to the condition for tightness given in Definition 1.1.
Thus, tight triangulations can also be interpreted as triangulations with the maximal persistence of
the homology in all dimensions with respect to the vertex ordering induced by f (see [22]). Hence,
showing the tightness of f is equivalent to proving the injectivity of ι∗i at all vertices v ∈ V (M) and
for all i, what will be done in the following. Note that for all values of i for which μi = 0, nothing
has to be shown so that we only have to deal with the cases where μi > 0 below.

The restriction of the number of critical points being non-zero only in every second dimension
results in

dimF Hi
(
Mv , Mv\{v}) � μi( f ;F) = 0

and

dimF Hd−i
(
Mv , Mv\{v}) � μd−i( f ;F) = 0
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and thus in Hi(Mv , Mv\{v}) = Hd−i(Mv , Mv\{v}) = 0 for all even 2 � i � 	 d
2 
 and all v ∈ V (M), as M

is F-orientable. This implies a splitting of the long exact sequence (2.1) at every second dimension,
yielding exact sequences of the forms

0 → Hi−1
(
Mv\{v}) ι∗i−1−−→ Hi−1(Mv) → Hi−1

(
Mv , Mv\{v}) → ·· ·

and

0 → Hd−i−1
(
Mv\{v}) ι∗d−i−1−−−→ Hd−i−1(Mv) → Hd−i−1

(
Mv , Mv\{v}) → ·· · ,

where the inclusions ι∗i−1 and ι∗d−i−1 are injective for all vertices v ∈ V (M), again for all even 2 � i �
	 d

2 
. Note in particular, that μd−2 = 0 always holds. For critical points of index d − 1, the situation
looks alike:

0 → Hd
(
Mv\{v})︸ ︷︷ ︸
=0

→ Hd(Mv) → Hd
(
Mv , Mv\{v})

→ Hd−1
(
Mv\{v}) ι∗d−1−−→ Hd−1(Mv) → Hd−1

(
Mv , Mv\{v}) → ·· · .

By assumption, f only has one maximal vertex as it is polar. Then, if v is not the maximal vertex with
respect to f , Hd(Mv , Mv\{v}) = 0 and thus ι∗d−1 is injective. If, on the other hand, v is the maximal
vertex with respect to f , one has

Hd(M) ∼= Hd
(
Mv , Mv\{v}),

as Mv = M in this case. Consequently, by the exactness of the sequence above, ι∗d−1 is also injective
in this case. Altogether it follows that ι∗i is injective for all i and for all vertices v ∈ V (M) and thus
that f is F-tight. �

As we will see in Section 3, this is a condition that can be translated into a purely combinatorial
one. Examples of manifolds to which Theorem 2.5 applies will be given in the following sections.

Remark 2.6.

(i) Theorem 2.5 can be understood as a combinatorial equivalent of Morse’s lacunary principle [14,
Lecture 2]. The lacunary principle in the smooth case states that if f is a smooth Morse function
on a smooth manifold M , such that its Morse polynomial Mt( f ) contains no consecutive powers
of t , then f is a perfect Morse function.

(ii) Due to the Morse relations, Theorem 2.5 puts a restriction on the topology of manifolds admitting
these kinds of Morse functions. In particular, they must have vanishing Betti numbers in the
dimensions where the number of critical points is zero. Note that in dimension d = 3 the theorem
thus only holds for homology 3-spheres with β1 = β2 = 0 and no statements concerning the
tightness of triangulations with β1 > 0 can be made. One way of proving the tightness of a 2-
neighborly combinatorial 3-manifold M would be to show that the mapping

H2(Mv) → H2
(
M,Mv\{v}) (2.2)

is surjective for all v ∈ V (M) and all rsl functions f . This would result in an injective mapping in
the homology group H1(Mv\{v}) → H1(Mv) for all v ∈ V (M) — as above by virtue of the long
exact sequence for the relative homology — and thus in the 1-tightness of M , which is equivalent
to the (F2-)tightness of M for d = 3, see [37, Proposition 3.18]. Unfortunately, there does not
seem to be an easy to check combinatorial condition on M that is sufficient for the surjectivity
of the mapping (2.2) for all v and all f , in contrast to the case of a combinatorial condition for
the 0-tightness of M for which this is just the 2-neighborliness of M .
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3. Tightness of members of K(d)

In this section we will investigate the tightness of members of Walkup’s class K(d), the family of
all combinatorial d-manifolds that only have stacked (d −1)-spheres as vertex links. For d � 2, K(d) is
the set of all triangulated d-manifolds. Kalai [31] showed that the stacking-condition of the links puts
a rather strong topological restriction on the members of K(d):

Theorem 3.1 (Kalai). (See [7,31].) Let d � 4. Then M is a connected member of K(d) if and only if M is obtained
from a stacked d-sphere by β1(M) combinatorial handle additions.

Here, a combinatorial handle addition to a complex C is defined as usual (see [31,46,65]) as the
complex Cψ obtained from C by identifying two facets �1 and �2 of C such that v ∈ V (�1) is
identified with w ∈ �2 only if d(v, w) � 3, where V (X) denotes the vertex set of a simplex X and
d(v, w) the distance of the vertices v and w in the 1-skeleton of C seen as undirected graph (cf. [5]).

In other words, Kalai’s theorem states that any connected M ∈ K(d) is necessarily homeomor-
phic to a connected sum with summands of the form S1 × Sd−1 and S1

� Sd−1, cf. [46]. Looking at
2-neighborly members of K(d), the following observation concerning the embedding of the triangu-
lation can be made.

Theorem 3.2. Let d = 2 or d � 4. Then any 2-neighborly member of K(d) yields a tight triangulation of the
underlying PL manifold.

Note that since any triangulated 1-sphere is stacked, K(2) is the set of all triangulated surfaces
and that any 2-neighborly triangulation of a surface is tight. The two conditions of the manifold being
2-neighborly and having only stacked spheres as vertex links are rather strong as the only stacked
sphere that is k-neighborly, k � 2, is the boundary of the simplex, see also Remark 5.6. Thus, the only
k-neighborly member of K(d), k � 3, d � 2, is the boundary of the (d + 1)-simplex.

The following lemma will be needed for the proof of Theorem 3.2.

Lemma 3.3. Let S be a stacked d-sphere, d � 3, and V ′ ⊆ V (S). Then Hd− j(spanS(V ′)) = 0 for 2 � j � d−1,
where H∗ denotes the simplicial homology groups.

Proof. Assume that S0 = ∂�d+1 and assume Si+1 is obtained from Si by a single stacking operation
such that there exists an N ∈ N with SN = S . Then Si+1 is obtained from Si by removing a facet of
Si and the boundary of a new d-simplex Ti followed by a gluing operation of Si and Ti along the
boundaries of the removed facets. This process can also be understood in terms of a bistellar 0-move
carried out on a facet of Si . Since this process does not remove any (d − 1)-simplices from Si or Ti
we have skeld−1(Si) ⊂ skeld−1(Si+1).

We prove the statement by induction on i. Clearly, the statement is true for i = 0, as S0 = ∂�d+1

and ∂�d+1 is (d + 1)-neighborly. Now assume that the statement holds for Si and let V ′
i+1 ⊂ V (Si+1).

In the following we can consider the connected components Ck of spanSi+1
(V ′

i+1) separately. If Ck ⊂ Si

or Ck ⊂ Ti then the statement is true by assumption and the (d + 1)-neighborliness of ∂�d+1, respec-
tively. Otherwise let P1 := Ck ∩ Si �= ∅ and P2 := Ck ∩ Ti �= ∅. Then

Hd− j(P1) ∼= Hd− j(P1 ∩ Ti) and Hd− j(P2) ∼= Hd− j(P2 ∩ Si).

This yields

Hd− j(P1 ∪ P2) = Hd− j
(
(P1 ∪ P2) ∩ Si ∩ Ti

)
= Hd− j

(
spanSi∩Ti

(
V ′

i+1

))
= Hd− j

(
spanSi∩Ti

(
V ′

i+1 ∩ V (Si ∩ Ti)
))

= 0,
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as Si ∩ Ti = ∂�d which is (d−1)-neighborly so that the span of any vertex set has vanishing (d− j)-th
homology for 2 � j � d − 1. �
Proof of Theorem 3.2. For d = 2, see [37] for a proof. From now on assume that d � 4. As can be
shown via excision, if M is a combinatorial d-manifold, f : M → R an rsl function on M and v ∈ V (M),
then

H∗
(
Mv , Mv\{v}) ∼= H∗

(
Mv ∩ st(v), Mv ∩ lk(v)

)
.

Now let d � 4, 1 < i < d − 1. The long exact sequence for the relative homology

· · · → Hd−i
(
Mv ∩ st(v)

) → Hd−i
(
Mv ∩ st(v), Mv ∩ lk(v)

)
→ Hd−i−1

(
Mv ∩ lk(v)

) → Hd−i−1
(
Mv ∩ st(v)

) → ·· ·
yields an isomorphism

Hd−i
(
Mv ∩ st(v), Mv ∩ lk(v)

) ∼= Hd−i−1
(
Mv ∩ lk(v)

)
, (3.1)

as Mv ∩ st(v) is a cone over Mv ∩ lk(v), thus contractible and we have Hd−i(Mv ∩ st(v)) =
Hd−i−1(Mv ∩ st(v)) = 0.

Since M ∈ K(d), all vertex links in M are stacked (d − 1)-spheres and thus Lemma 3.3 applies
to the right-hand side of (3.1). This implies that a d-manifold M ∈ K(d), d � 4, cannot have critical
points of index 2 � i � d − 2, i.e., μ2( f ;F) = · · · = μd−2( f ;F) = 0.

Furthermore, the 2-neighborliness of M implies that any rsl function on M is polar. Thus, all
prerequisites of Theorem 2.5 are fulfilled, f is tight and consequently M is a tight triangulation, what
was to be shown. �
Remark 3.4. In even dimensions d � 4, Theorem 3.2 can also be proved without using Theorem 2.5.
In this case the statement follows from the 2-neighborliness of M (that yields μ0( f ;F) = β0 and
μd( f ;F) = βd), and the Morse relations 2.4 which then yield μ1( f ;F) = β1 and μd−1( f ;F) = βd−1
for any rsl function f , as μ2( f ;F) = · · · = μd−2( f ;F) = 0.

As a consequence, the stacking condition of the links already implies the vanishing of β2, . . . , βd−2
(as by the Morse relations μi � βi ), in accordance with Kalai’s Theorem 3.1.

An example of a series of tight combinatorial manifolds is the infinite series of sphere bundles
over the circle due to Kühnel [33]. The triangulations in this series are all 2-neighborly on f0 = 2d +3
vertices. They are homeomorphic to Sd−1 × S1 in even dimensions and to Sd−1

� S1 in odd dimensions.
Furthermore, all links are stacked and thus Theorem 3.2 applies providing an alternative proof of the
tightness of the triangulations in this series.

Corollary 3.5. All members Md of the series of triangulations in [33] are 2-neighborly and lie in the class K(d).
They are thus tight triangulations by Theorem 3.2.

Another example of a triangulation to which Theorem 3.2 applies is due to Bagchi and Datta [7]. It
is an example of a so-called tight-neighborly triangulation as defined by Lutz, Sulanke and Swartz [46].
For this class of manifolds, Theorem 3.2 holds for d = 2 and d � 4. Tight-neighborly triangulations will
be described in more detail in the next section.

4. Tight-neighborly triangulations

Beside the class of combinatorial d-manifolds with stacked spheres as vertex links K(d),
Walkup [65] also defined the class H(d). This is the family of all simplicial complexes that can
be obtained from the boundary complex of the (d + 1)-simplex by a series of zero or more of the
following three operations: (i) stellar subdivision of facets, (ii) combinatorial handle additions and
(iii) forming connected sums of objects obtained from the first two operations.
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The two classes are closely related. Obviously, the relation H(d) ⊂ K(d) holds. Kalai [31] showed
the reverse inclusion K(d) ⊂ H(d) for d � 4.

Note that the condition of the 2-neighborliness of an M ∈ K(d) in Theorem 3.2 is equivalent to
the first Betti number β1(M) being maximal with respect to the vertex number f0(M) of M (as
a 2-neighborly triangulation does not allow any handle additions). Such manifolds are exactly the
cases of equality in [55, Theorem 5.2]. In their recent work [46], Lutz, Sulanke and Swartz prove the
following2

Theorem 4.1. (See Theorem 5 in [46].) Let K be any field and let M be a K-orientable triangulated d-manifold
with d � 3. Then

f0(M) �
⌈

1

2

(
2d + 3 + √

1 + 4(d + 1)(d + 2)β1(M;K)
)⌉

. (4.1)

Remark 4.2. As pointed out in [46], for d = 2 inequality (4.1) coincides with Heawood’s inequality

f0(M) �
⌈

1

2

(
7 + √

49 − 24χ(M)
)⌉

,

if one replaces β1(M;K) by 1
2 β1(M;K) to account for the double counting of the middle Betti number

β1(M;K) of surfaces by Poincaré duality. Inequality (4.1) can also be written in the form(
f0 − d − 1

2

)
�

(
d + 2

2

)
β1.

Thus, Theorem 5 in [46] settles Kühnel’s conjectured bounds(
f0 − d + j − 2

j + 1

)
�

(
d + 2

j + 1

)
β j with 1 � j �

⌊
d − 1

2

⌋
in the case j = 1.

For β1 = 1, the bound (4.1) coincides with the Brehm–Kühnel bound f0 � 2d + 4 − j for
( j − 1)-connected but not j-connected d-manifolds in the case j = 1, see [15]. Inequality (4.1) is
sharp by the series of vertex minimal triangulations of sphere bundles over the circle presented
in [33].

Triangulations of connected sums of sphere bundles (S2 × S1)#k and (S2

� S1)#k attaining equality
in (4.1) for d = 3 were discussed in [46]. Note that such triangulations are necessarily 2-neighborly.

Definition 4.3 (Tight-neighborly triangulation). (See [46].) Let d � 2 and let M be a triangulation of
(Sd−1 × S1)#k or (Sd−1

� S1)#k attaining equality in (4.1). Then M is called a tight-neighborly triangu-
lation.

For d � 4, all triangulations of F-orientable F-homology d-manifolds with equality in (4.1) lie in
H(d) and are tight-neighborly triangulations of (Sd−1 × S1)#k or (Sd−1

� S1)#k by Theorem 5.2 in [55].
The authors conjectured in [46, Conjecture 13] that all tight-neighborly triangulations are tight in

the classical sense of Definition 1.1 and showed that the conjecture holds in the following cases: for
β1 = 0,1 and any d and for d = 2 and any β1. Indeed, the conjecture also holds for any d � 4 and
any β1 as a direct consequence of Theorem 3.2.

2 The author would like to thank Frank Lutz for fruitful discussions about tight-neighborly triangulations and pointing him to
the work [46] in the first place.
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Table 1
Known and open cases for β1, d and n of 2-neighborly members of K(d).

β1 d n Top. type Reference

0 any d d + 1 Sd−1 ∂�d

1 any even d � 2 2d + 3 Sd−1 × S1 [33] (d = 2: [20,51])
1 any odd d � 2 2d + 3 Sd−1

� S1 [33] (d = 3: [3,65])
2 13 35 ?
3 4 15 (S3

� S1)#3 [7]
5 5 21 ?
8 10 44 ?

Corollary 4.4. For d � 4, all tight-neighborly triangulations are tight.

Proof. For d � 4, one has H(d) = K(d) and the statement is true for all 2-neighborly members of
K(d) by Theorem 3.2. �

It remains to investigate, whether for vertex minimal triangulations of d-handlebodies, d � 3,
the reverse implication is true, too, i.e., that for this class of triangulations the terms of tightness
and tight-neighborliness are equivalent.

Question 4.5. Let d � 4 and let M be a tight triangulation homeomorphic to (Sd−1 × S1)#k or
(Sd−1

� S1)#k . Does this imply that M is tight-neighborly?

As was shown in [46], at least for values of β1 = 0,1 and any d and for d = 2 and any β1 this is
true.

One example of a triangulation for which Theorem 3.2 holds is due to Bagchi and Datta [7]. The tri-
angulation M4

15 of (S3

� S1)#3 from [7] is a 2-neighborly combinatorial 4-manifold on 15 vertices that
is a member of K(4) with f -vector f = (15, 105, 230, 240, 96). Since M4

15 is tight-neighborly, we
have the following corollary.

Corollary 4.6. The 4-manifold M4
15 given in [7] is a tight triangulation.

The next possible triples of values of β1, d and n for which a 2-neighborly member of K(d) could
exist (cf. [46]) are listed in Table 1. Apart from the sporadic examples in dimension 4 and the in-
finite series of higher-dimensional analogues of Császár’s torus in arbitrary dimension d � 2 due to
Kühnel [33], cf. [5,19,40], mentioned earlier, no further examples are known as of today.

Especially in (the odd) dimension d = 3, things seem to be a bit more subtle, as already laid out
in Remark 2.6. As Altshuler and Steinberg [2] showed that the link of any vertex in a neighborly 4-
polytope is stacked (cf. also Remark 5 in [31]), we know that the class K(3) is rather big compared
to H(3). Thus, a statement equivalent to Theorem 3.2 is not surprisingly false for members of K(3),
a counterexample being the boundary of the cyclic polytope ∂C(4,6) ∈ K(3) which is 2-neighborly
but certainly not a tight triangulation as it has empty triangles. The only currently known non-trivial
example of a tight-neighborly combinatorial 3-manifold is a 9-vertex triangulation M3 of S2

� S1,
independently found by Walkup [65] and Altshuler and Steinberg [3]. This triangulation is combi-
natorially unique, as was shown by Bagchi and Datta [6]. For d = 3, it is open whether there exist
tight-neighborly triangulations for higher values of β1 � 2, see [46, Question 12].

The fact that M3 is a tight triangulation is well known, see [37]. Yet, we will present here another
proof of the tightness of M3. It is a rather easy procedure when looking at the 4-polytope P the
boundary of which M3 was constructed from by one elementary combinatorial handle addition, see
also [7].

Lemma 4.7. Walkup’s 9-vertex triangulation M3 of S2

� S1 is tight.
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Proof. Take the stacked 4-polytope P with f -vector f (P ) = (13,42,58,37,9) from [65]. Its facets are

〈1 2 3 4 5〉, 〈2 3 4 5 6〉, 〈3 4 5 6 7〉,
〈4 5 6 7 8〉, 〈5 6 7 8 9〉, 〈6 7 8 9 10〉,
〈7 8 9 10 11〉, 〈8 9 10 11 12〉, 〈9 10 11 12 13〉.

As P is stacked it has missing edges (called diagonals), but no empty faces of higher dimension.
Take the boundary ∂ P of P . By construction, P has no inner i-faces for 0 � i � 2, so that ∂ P

has the 36 diagonals of P and additionally 8 empty tetrahedra, but no empty triangles. As ∂ P is a
3-sphere, the empty tetrahedra are all homologous to zero.

Now form a 1-handle over ∂ P by removing the two tetrahedra 〈1,2,3,4〉 and 〈10,11,12,13〉
from ∂ P followed by an identification of the four vertex pairs (i, i + 9), 1 � i � 4, where the newly
identified vertices are labeled with 1, . . . ,4.

This process yields a 2-neighborly combinatorial manifold M3 with 13 − 4 = 9 vertices and one
additional empty tetrahedron 〈1,2,3,4〉, which is the generator of H2(M).

As M3 is 2-neighborly, it is 0-tight and as ∂ P had no empty triangles, two empty triangles in the
span of any vertex subset V ′ ⊂ V (M) are always homologous. Thus, M3 is a tight triangulation. �

The construction in the proof above could probably be used in the general case with d = 3 and
β1 � 2: one starts with a stacked 3-sphere M0 as the boundary of a stacked 4-polytope which by
construction does not contain empty 2-faces and then successively forms handles over this boundary
3-sphere (obtaining triangulated manifolds M1, . . . , Mn = M) until the resulting triangulation M is 2-
neighborly and fulfills equality in (4.1). Note that this can only be done in the regular cases of (4.1),
i.e., where (4.1) admits integer solutions for the case of equality. For a list of possible configurations
see [46].

5. k-stacked spheres and the class Kk(d)

McMullen and Walkup [48] extended the notion of stacked polytopes to k-stacked polytopes
as simplicial d-polytopes that can be triangulated without introducing new j-faces for 0 � j �
d − k − 1.

Definition 5.1 (k-stacked balls and spheres). (See [31,48].) A k-stacked (d + 1)-ball, 0 � k � d, is a tri-
angulated (d + 1)-ball that has no interior j-faces, 0 � j � d − k. A minimally k-stacked (d + 1)-ball
is a k-stacked (d + 1)-ball that is not (k − 1)-stacked. The boundary of any (minimally) k-stacked
(d + 1)-ball is called a (minimally) k-stacked d-sphere.

Note that in this context the ordinary stacked d-spheres are exactly the 1-stacked d-spheres. Note
furthermore, that a k-stacked d-sphere is obviously also (k + l)-stacked, where l ∈ N, k + l � d, cf. [4].
The simplex �d+1 is the only 0-stacked (d + 1)-ball and the boundary of the simplex ∂�d+1 is the
only 0-stacked d-sphere. Keep in mind that all triangulated d-spheres are at least d-stacked [4, Re-
mark 9.1].

Fig. 1 shows the boundary of an octahedron as an example of a minimally 2-stacked 2-sphere S
with 6 vertices. The octahedron that is subdivided along the inner diagonal (5,6) can be regarded as a
triangulated 3-ball B with skel0(S) = skel0(B) and ∂ B = S . Note that although all vertices of B are on
the boundary, there is an inner edge so that the boundary is 2-stacked, but not 1-stacked. In higher
dimensions, examples of minimally d-stacked d-spheres exist as boundary complexes of subdivided
d-cross polytopes with an inner diagonal.

Akin to the 1-stacked case, a more geometrical characterization of k-stacked d-spheres can be
given via bistellar moves (also known as Pachner moves, see [56]), at least for k � � d

2 �.



1854 F. Effenberger / Journal of Combinatorial Theory, Series A 118 (2011) 1843–1862
Fig. 1. A minimally 2-stacked S2 as the boundary complex of a subdivided 3-octahedron.

Fig. 2. Left: a 0-move on a tetrahedron and its inverse 3-move (i.e., a reverse 0-move). Right: a 1-move on two tetrahedra glued
together at one triangle and its inverse 2-move (i.e., a reverse 1-move).

Definition 5.2 (Bistellar moves). Let M be a triangulated d-manifold and let A be a (d − i)-face of M ,
0 � i � d, such that there exists an i-simplex B that is not a face of M with lkM(A) = ∂ B . Then a
bistellar i-move ΦA on M is defined by

ΦA(M) := (
M\(A ∗ ∂ B)

) ∪ (∂ A ∗ B),

where ∗ denotes the join operation for simplicial complexes. Bistellar i-moves with i > 	 d
2 
 are also-

called reverse (d − i)-moves.

See Fig. 2 for an example illustration of bistellar moves in dimension d = 3. Note that for any
bistellar move ΦA(M), A ∗ B forms a (d + 1)-simplex. Thus, any sequence of bistellar moves defines
a sequence of (d + 1)-simplices — this we will call the induced sequence of (d + 1)-simplices in the
following.

Lemma 5.3. For k � � d
2 �, a complex S obtained from the boundary of the (d + 1)-simplex by a sequence of

bistellar i-moves, 0 � i � k − 1, is a k-stacked d-sphere.

Proof. As k � � d
2 �, the sequence of (d+1)-simplices induced by the sequence of bistellar moves is du-

plicate free and defines a simplicial (d + 1)-ball B with ∂ B = S . Furthermore, skeld−k(B) = skeld−k(S)

holds as no bistellar move in the sequence can contribute an inner j-face to B , 0 � j � d − k. Thus,
S is a k-stacked d-sphere. �

Note that converse of Lemma 5.3 is not true (see Proposition 5 in [8]) and also keep in mind, that
this interpretation does not hold for values k > � d

2 �, as in this case the sequence of (d + 1)-simplices
induced by the sequence of bistellar moves may have duplicate entries, as opposed to the case with
k � � d

2 �.
In terms of bistellar moves, the minimally 2-stacked sphere in Fig. 1 can be constructed as follows:

Start with a solid tetrahedron and stack another tetrahedron onto one of its facets (a 0-move). Now
introduce the inner diagonal (5,6) via a bistellar 1-move. Clearly, this complex is not bistellarly equiv-
alent to the simplex by only applying reverse 0-moves (and thus not (1-)stacked) but it is bistellarly
equivalent to the simplex by solely applying reverse 0-, and 1-moves and thus minimally 2-stacked.
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Table 2
Some known tight triangulations and their membership in the classes Kk(d), cf. [41],
with n denoting the number of vertices of the triangulation and nb. its neighborliness.

d Top. type n nb. k

4 CP 2 9 3 2
4 K 3 16 3 2
4 (S3

� S1)#(CP 2)#5 15 2 2
5 S3 × S2 12 3 2
5 SU(3)/S O (3) 13 3 3
6 S3 × S3 13 4 3

The author is one of the authors of the toolkit simpcomp [24,25] for simplicial constructions
in the GAP system [27]. simpcomp contains a randomized algorithm that checks whether a given
d-sphere is k-stacked, k � � d

2 �, using the argument above.
With the notion of k-stacked spheres at hand one can define the following generalization of

Walkup’s class K(d).

Definition 5.4 (The class Kk(d)). Let Kk(d), k � d, be the family of all d-dimensional simplicial com-
plexes all whose vertex links are k-stacked spheres.

Note that Kd(d) is the set of all triangulated manifolds for any d and that Walkup’s class K(d)

coincides with K1(d) above. In analogy to the 1-stacked case, a (k + 1)-neighborly member of Kk(d)

with d � 2k necessarily has vanishing β1, . . . , βk−1. Thus, it seems reasonable to ask for the existence
of a generalization of Kalai’s Theorem 3.1 to the class of Kk(d) for k � 2.

Furthermore, one might be tempted to ask for a generalization of Theorem 3.2 to the class Kk(d)

for k � 2. Unfortunately, there seems to be no direct way of generalizing Theorem 3.2 to also hold
for members of Kk(d) giving a combinatorial condition for the tightness of such triangulations. The
key obstruction here is the fact that a generalization of Lemma 3.3 is impossible. While in the case of
ordinary stacked spheres a bistellar 0-move does not introduce inner simplices to the (d−1)-skeleton,
the key argument in Lemma 3.3, this is not true for bistellar i-moves for i � 1.

Nonetheless, an analogous result to Theorem 3.2 should be true for such triangulations.

Question 5.5. Let d � 4 and 2 � k � 	 d+1
2 
 and let M be a (k + 1)-neighborly combinatorial manifold

such that M ∈ Kk(d). Does this imply the tightness of M?

Remark 5.6. Note that all vertex links of (k + 1)-neighborly members of Kk(d) are k-stacked, k-
neighborly (d − 1)-spheres. McMullen and Walkup [48, Section 3] showed that there exist k-stacked,
k-neighborly (d − 1)-spheres on n vertices for any 2 � 2k � d < n. Some examples of such spheres
will be given in the following. The conditions of being k-stacked and k-neighborly at the same time is
strong as the two conditions tend to exclude each other in the following sense: McMullen and Walkup
showed that if a d-sphere is k-stacked and k′-neighborly with k′ > k, then it is the boundary of the
simplex. In that sense, the k-stacked k-neighborly spheres appear as the most strongly restricted non-
trivial objects of this class: The conditions in Theorem 3.2 (with k = 1) and in Question 5.5 are the
most restrictive ones still admitting non-trivial solutions.

Remark 5.7. Most recently, Bagchi and Datta [8] gave a negative answer to Question 5.5 in odd di-
mensions d = 2k + 1 [8, Proposition 16], but could almost prove the statement for d �= 2k + 1 [8,
Proposition 20].

Kühnel and Lutz [41] gave an overview of the currently known tight triangulations. The statement
of Question 5.5 holds for all the triangulations listed in [41]. Note that there even exist k-neighborly
triangulations in Kk(d) that are tight and thus fail to fulfill the prerequisites of Question 5.5 (see
Table 2).
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Although we did not succeed in proving conditions for the tightness of triangulations lying in
Kk(d), k � 2, these have nonetheless interesting properties that we will investigate upon in the fol-
lowing. Also, many known tight triangulations are members of these classes, as will be shown. Our
first observation is that the neighborliness of a triangulation is closely related to the property of being
a member of Kk(d).

Lemma 5.8. Let k ∈ N and M be a combinatorial d-manifold, d � 2k, that is a (k+1)-neighborly triangulation.
Then M ∈ Kd−k(d).

Proof. If M is (k + 1)-neighborly, then for any v ∈ V (M), lk(v) is k-neighborly. As lk(v) is PL homeo-
morphic to ∂�d (since M is a combinatorial manifold) there exists a d-ball B with ∂ B = lk(v) (cf. [4]).
Since lk(v) is k-neighborly, skelk−1(B) = skelk−1(lk(v)). By Definition 5.1, the link of every vertex
v ∈ V (M) then is (d − k)-stacked and thus M ∈ Kd−k(d). �

As pointed out in Section 1, Kühnel [37, Chapter 4] investigated (k + 1)-neighborly triangulations
of 2k-manifolds and showed that all these are tight triangulations. By Lemma 5.8, all their vertex
links are k-stacked spheres.

Corollary 5.9. Let M be a (k + 1)-neighborly (tight) triangulation of a 2k-manifold. Then M lies in Kk(2k).

In particular, this holds for many vertex minimal (tight) triangulations of 4-manifolds.

Corollary 5.10. The known examples of the vertex-minimal tight triangulation of a K 3-surface with f -vector
f = (16,120,560,720,288) due to Casella and Kühnel [16] and the unique vertex-minimal tight triangula-
tion of CP 2 with f -vector f = (9,36,84,90,36) due to Kühnel [39], cf. [38] are 3-neighborly triangulations
that lie in K2(4).

Let us now shed some light on properties of members of K2(6). First recall that there exists
a Generalized Lower Bound Conjecture (GLBC) due to McMullen and Walkup as an extension to the
classical Lower Bound Theorem for triangulated spheres as follows.

Conjecture 5.11 (GLBC). (Cf. [4,48].) For d � 2k + 1, the face-vector ( f0, . . . , fd) of any triangulated d-sphere
S satisfies

f j �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑k−1
i=−1(−1)k−i+1

( j−i−1
j−k

)(d−i+1
j−i

)
f i, if k � j � d − k,∑k−1

i=−1(−1)k−i+1
[( j−i−1

j−k

)(d−i+1
j−i

) − ( k
d− j+1

)( d−i
d−k+1

)
+ ∑k+1

l=d− j(−1)k−l
( l

d− j

)( d−i
d−l+1

)]
f i, if d − k + 1 � j � d.

(5.1)

Equality holds here for any j if and only if S is a k-stacked d-sphere.

The GLBC implies the following theorem for d = 6, which is a 6-dimensional analogue of Walkup’s
theorem [65, Theorem 5], [37, Proposition 7.2], see also Swartz’ Theorem 4.10 in [64].

Theorem 5.12. Assuming the validity of the Generalized Lower Bound Conjecture 5.11, for any combinatorial
6-manifold M the inequality

f2(M) � 28χ(M) − 21 f0 + 6 f1 (5.2)

holds. If M is 2-neighborly, then

f2(M) � 28χ(M) + 3 f0( f0 − 8) (5.3)

holds. In either case equality is attained if and only if M ∈ K2(6).



F. Effenberger / Journal of Combinatorial Theory, Series A 118 (2011) 1843–1862 1857
Proof. Clearly,

f3(M) = 1

4

∑
v∈V (M)

f2
(
lk(v)

)
. (5.4)

By applying the GLBC 5.11 to all the vertex links of M one obtains a lower bound on f2(lk(v)) for all
v ∈ V (M):

f2
(
lk(v)

)
� 35 − 15 f0

(
lk(v)

) + 5 f1
(
lk(v)

)
. (5.5)

Here equality is attained if and only if lk(v) is 2-stacked. Combining (5.4) and (5.5) yields a lower
bound

f3(M) � 1

4

∑
v∈V (M)

35 − 15 f0
(
lk(v)

) + 5 f1
(
lk(v)

)

= 5

4

(
7 f0(M) − 6 f1(M) + 3 f2(M)

)
, (5.6)

for which equality holds if and only if M ∈ K2(6).
If we eliminate f4, f5 and f6 from the Dehn–Sommerville-equations for combinatorial 6-

manifolds, we obtain the linear equation

35 f0(M) − 15 f1(M) + 5 f2(M) − f3(M) = 35χ(M). (5.7)

Inserting inequality (5.6) into (5.7) and solving for f2(M) yields the claimed lower bounds (5.2)
and (5.3),

f2(M) � 28χ(M) − 21 f0(M) + 6 f1(M)

= 28χ(M) + 3 f0
(

f0(M) − 8︸ ︷︷ ︸
�0

)
, (5.8)

where the 2-neighborliness of M was used in the last line. �
For a possible 14-vertex triangulation of S4 × S2 (with χ = 4) inequality (5.8) becomes

f2 � 4 · 28 + 3 · 14 · (14 − 8) = 364,

but together with the trivial upper bound f2 �
( f0

3

)
this already would imply that such a triangulation

necessarily is 3-neighborly, as
(14

3

) = 364.
So, just by asking for a 2-neighborly combinatorial S4 × S2 on 14 vertices that lies in K2(6)

already implies that this triangulation is 3-neighborly. Also, the example would attain equality in the
Brehm–Kühnel bound [15] as an example of a 1-connected 6-manifold with 14 vertices. We strongly
conjecture that this triangulation also would be tight, see Question 5.5.

6. Subcomplexes of the cross polytope

The d-dimensional cross polytope (or d-octahedron) βd is defined as the convex hull of the 2d
points

(0, . . . ,0,±1,0, . . . ,0) ∈ R
d.

It is a simplicial and regular polytope and it is centrally-symmetric with d missing edges called
diagonals, each between two antipodal points of type (0, . . . ,0,1,0, . . . ,0) and (0, . . . ,0,−1,0, . . . ,0).
Its edge graph is the complete d-partite graph with two vertices in each partition, sometimes denoted
by K2 ∗ · · · ∗ K2. See [28,47,66] for properties of regular polytopes in general.
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The boundary of the (d+1)-cross polytope βd+1 is an obviously minimally d-stacked d-sphere as it
can be obtained as the boundary of a minimally d-stacked (d +1)-ball that is given by any subdivision
of βd+1 along an inner diagonal.

As pointed out in Section 1, centrally symmetric analogues of tight triangulations appear as Hamil-
tonian subcomplexes of cross polytopes. A centrally symmetric triangulation is a triangulation such that
there exists a combinatorial involution operating on the face lattice of the triangulation without fixed
points. Any centrally symmetric triangulation thus has an even number of vertices and can be in-
terpreted as a subcomplex of some higher-dimensional cross polytope. The tightness of a centrally
symmetric (k − 1)-connected 2k-manifold M as a subcomplex of βd then is equivalent to M being a
k-Hamiltonian subcomplex of βd , i.e., that M is nearly (k + 1)-neighborly, see [37, Chapter 4].

As it turns out, all of the known centrally symmetric triangulations of d-manifolds that are k-
Hamiltonian subcomplexes of a higher-dimensional cross polytope βN and admit a tight embedding
into βN are members of the class Kk(d). This will be discussed in the following paragraphs.

Corollary 6.1. The 16-vertex triangulation of (S2 × S2)#7
16 presented in [23] is contained in K2(4) and admits

a tight embedding into β8 as shown in [23].

Proof. The triangulation (S2 × S2)#7
16 is a combinatorial manifold and a tight subcomplex of β8 as

shown in [23]. Thus, each vertex link is a PL 3-sphere. It remains to show that all vertex links are
2-stacked.

Using simpcomp, we found that the vertex links can be obtained from the boundary of a 4-
simplex by a sequence of 0- and 1-moves. Therefore, by Lemma 5.3, the vertex links are 2-stacked
3-spheres. Thus, (S2 × S2)#7

16 ∈ K2(4), as claimed. �
The following centrally symmetric triangulation of S4 × S2 is a new example of a triangulation

that can be seen as a subcomplex of a higher-dimensional cross polytope.

Theorem 6.2. There exists an example of a centrally symmetric triangulation M6
16 of S4 × S2 with 16 vertices

that is a 2-Hamiltonian subcomplex of the 8-octahedron β8 and that is member of K2(6).

Proof. The construction of M6
16 was done entirely with simpcomp and is as follows. First, a 24-vertex

triangulation M̃6 of S4 × S2 was constructed as the standard simplicial cartesian product of ∂�3 and
∂�5 as implemented in [24], where �d denotes the d-simplex. Then M̃6 obviously is a combinatorial
6-manifold homeomorphic to S4 × S2.

This triangulation M̃6 was then reduced to the triangulation M6
16 with f -vector f = (16,112,

448,980,1232,840,240) using a vertex reduction algorithm based on bistellar flips that is imple-
mented in [24]. The code is based on the vertex reduction methods developed by Björner and
Lutz [12]. It is well known that this reduction process leaves the PL type of the triangulation in-
variant, such that M6

16
∼= S4 × S2 holds. The f -vector of M6

16 is uniquely determined already by the
condition of M6

16 to be 2-Hamiltonian in the 8-dimensional cross polytope. In particular, M6
16 has 8

missing edges of the form 〈i, i + 1〉 for all odd 1 � i � 15, which are pairwise disjoint and correspond
to the 8 diagonals of the cross polytope. As there is an involution

I = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)

operating on the faces of M6
16 without fixed points, M6

16 can be seen as a 2-Hamiltonian subcomplex
of β8. Apart from I , M6

16 has no non-trivial symmetries, i.e., we have Aut(M6
16) = 〈I〉 ∼= C2. The 240

facets of M6
16 are given in Table 3.

It remains to show that M6
16 ∈ K2(6). Remember, that the necessary and sufficient condition for

a triangulation X to be member of Kk(d) is that all vertex links of X are k-stacked (d − 1)-spheres.
Since M6

16 is a combinatorial 6-manifold, all vertex links are PL 5-spheres. It thus suffices to show
that all vertex links are 2-stacked.
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Table 3
The 240 5-simplices of M6

16.

〈1 2 3 4 7 12 14〉, 〈1 2 3 4 7 12 16〉, 〈1 2 3 4 7 13 14〉, 〈1 2 3 4 7 13 16〉, 〈1 2 3 4 9 12 14〉,
〈1 2 3 4 9 12 16〉, 〈1 2 3 4 9 14 16〉, 〈1 2 3 4 13 14 16〉, 〈1 2 3 6 7 12 14〉, 〈1 2 3 6 7 12 16〉,
〈1 2 3 6 7 13 14〉, 〈1 2 3 6 7 13 16〉, 〈1 2 3 6 9 10 12〉, 〈1 2 3 6 9 10 13〉, 〈1 2 3 6 9 12 16〉,
〈1 2 3 6 9 13 16〉, 〈1 2 3 6 10 11 12〉, 〈1 2 3 6 10 11 13〉, 〈1 2 3 6 11 12 14〉, 〈1 2 3 6 11 13 14〉,
〈1 2 3 9 10 11 12〉, 〈1 2 3 9 10 11 13〉, 〈1 2 3 9 11 12 14〉, 〈1 2 3 9 11 13 14〉, 〈1 2 3 9 13 14 16〉,
〈1 2 4 7 12 14 15〉, 〈1 2 4 7 12 15 16〉, 〈1 2 4 7 13 14 15〉, 〈1 2 4 7 13 15 16〉, 〈1 2 4 9 12 14 16〉,
〈1 2 4 12 14 15 16〉, 〈1 2 4 13 14 15 16〉, 〈1 2 6 7 12 14 16〉, 〈1 2 6 7 13 14 15〉, 〈1 2 6 7 13 15 16〉,
〈1 2 6 7 14 15 16〉, 〈1 2 6 9 10 11 12〉, 〈1 2 6 9 10 11 13〉, 〈1 2 6 9 11 12 14〉, 〈1 2 6 9 11 13 15〉,
〈1 2 6 9 11 14 15〉, 〈1 2 6 9 12 14 16〉, 〈1 2 6 9 13 15 16〉, 〈1 2 6 9 14 15 16〉, 〈1 2 6 11 13 14 15〉,
〈1 2 7 12 14 15 16〉, 〈1 2 9 11 13 14 15〉, 〈1 2 9 13 14 15 16〉, 〈1 3 4 7 12 14 16〉, 〈1 3 4 7 13 14 16〉,
〈1 3 4 9 12 14 16〉, 〈1 3 6 7 12 14 16〉, 〈1 3 6 7 13 14 16〉, 〈1 3 6 8 9 10 11〉, 〈1 3 6 8 9 10 13〉,
〈1 3 6 8 9 11 14〉, 〈1 3 6 8 9 13 14〉, 〈1 3 6 8 10 11 13〉, 〈1 3 6 8 11 13 14〉, 〈1 3 6 9 10 11 12〉,
〈1 3 6 9 11 12 14〉, 〈1 3 6 9 12 14 16〉, 〈1 3 6 9 13 14 16〉, 〈1 3 8 9 10 11 13〉, 〈1 3 8 9 11 13 14〉,
〈1 4 7 8 10 11 13〉, 〈1 4 7 8 10 11 15〉, 〈1 4 7 8 10 13 16〉, 〈1 4 7 8 10 15 16〉, 〈1 4 7 8 11 13 15〉,
〈1 4 7 8 12 14 15〉, 〈1 4 7 8 12 14 16〉, 〈1 4 7 8 12 15 16〉, 〈1 4 7 8 13 14 15〉, 〈1 4 7 8 13 14 16〉,
〈1 4 7 10 11 13 15〉, 〈1 4 7 10 13 15 16〉, 〈1 4 8 10 11 13 15〉, 〈1 4 8 10 13 15 16〉, 〈1 4 8 12 14 15 16〉,
〈1 4 8 13 14 15 16〉, 〈1 6 7 8 10 11 13〉, 〈1 6 7 8 10 11 15〉, 〈1 6 7 8 10 13 16〉, 〈1 6 7 8 10 15 16〉,
〈1 6 7 8 11 13 15〉, 〈1 6 7 8 13 14 15〉, 〈1 6 7 8 13 14 16〉, 〈1 6 7 8 14 15 16〉, 〈1 6 7 10 11 13 15〉,
〈1 6 7 10 13 15 16〉, 〈1 6 8 9 10 11 15〉, 〈1 6 8 9 10 13 16〉, 〈1 6 8 9 10 15 16〉, 〈1 6 8 9 11 14 15〉,
〈1 6 8 9 13 14 16〉, 〈1 6 8 9 14 15 16〉, 〈1 6 8 11 13 14 15〉, 〈1 6 9 10 11 13 15〉, 〈1 6 9 10 13 15 16〉,
〈1 7 8 12 14 15 16〉, 〈1 8 9 10 11 13 15〉, 〈1 8 9 10 13 15 16〉, 〈1 8 9 11 13 14 15〉, 〈1 8 9 13 14 15 16〉,
〈2 3 4 5 7 10 11〉, 〈2 3 4 5 7 10 16〉, 〈2 3 4 5 7 11 14〉, 〈2 3 4 5 7 14 16〉, 〈2 3 4 5 9 10 11〉,
〈2 3 4 5 9 10 12〉, 〈2 3 4 5 9 11 14〉, 〈2 3 4 5 9 12 16〉, 〈2 3 4 5 9 14 16〉, 〈2 3 4 5 10 12 16〉,
〈2 3 4 7 10 11 12〉, 〈2 3 4 7 10 12 16〉, 〈2 3 4 7 11 12 14〉, 〈2 3 4 7 13 14 16〉, 〈2 3 4 9 10 11 12〉,
〈2 3 4 9 11 12 14〉, 〈2 3 5 6 9 10 12〉, 〈2 3 5 6 9 10 13〉, 〈2 3 5 6 9 11 13〉, 〈2 3 5 6 9 11 14〉,
〈2 3 5 6 9 12 16〉, 〈2 3 5 6 9 14 16〉, 〈2 3 5 6 10 11 12〉, 〈2 3 5 6 10 11 13〉, 〈2 3 5 6 11 12 14〉,
〈2 3 5 6 12 14 16〉, 〈2 3 5 7 10 11 12〉, 〈2 3 5 7 10 12 16〉, 〈2 3 5 7 11 12 14〉, 〈2 3 5 7 12 14 16〉,
〈2 3 5 9 10 11 13〉, 〈2 3 6 7 12 14 16〉, 〈2 3 6 7 13 14 16〉, 〈2 3 6 9 11 13 14〉, 〈2 3 6 9 13 14 16〉,
〈2 4 5 7 10 11 12〉, 〈2 4 5 7 10 12 15〉, 〈2 4 5 7 10 15 16〉, 〈2 4 5 7 11 12 14〉, 〈2 4 5 7 12 14 15〉,
〈2 4 5 7 14 15 16〉, 〈2 4 5 9 10 11 12〉, 〈2 4 5 9 11 12 14〉, 〈2 4 5 9 12 14 16〉, 〈2 4 5 10 12 15 16〉,
〈2 4 5 12 14 15 16〉, 〈2 4 7 10 12 15 16〉, 〈2 4 7 13 14 15 16〉, 〈2 5 6 9 10 11 12〉, 〈2 5 6 9 10 11 13〉,
〈2 5 6 9 11 12 14〉, 〈2 5 6 9 12 14 16〉, 〈2 5 7 10 12 15 16〉, 〈2 5 7 12 14 15 16〉, 〈2 6 7 13 14 15 16〉,
〈2 6 9 11 13 14 15〉, 〈2 6 9 13 14 15 16〉, 〈3 4 5 7 8 10 11〉, 〈3 4 5 7 8 10 16〉, 〈3 4 5 7 8 11 12〉,
〈3 4 5 7 8 12 16〉, 〈3 4 5 7 11 12 14〉, 〈3 4 5 7 12 14 16〉, 〈3 4 5 8 9 10 11〉, 〈3 4 5 8 9 10 12〉,
〈3 4 5 8 9 11 12〉, 〈3 4 5 8 10 12 16〉, 〈3 4 5 9 11 12 14〉, 〈3 4 5 9 12 14 16〉, 〈3 4 7 8 10 11 12〉,
〈3 4 7 8 10 12 16〉, 〈3 4 8 9 10 11 12〉, 〈3 5 6 8 9 10 12〉, 〈3 5 6 8 9 10 13〉, 〈3 5 6 8 9 11 12〉,
〈3 5 6 8 9 11 13〉, 〈3 5 6 8 10 11 12〉, 〈3 5 6 8 10 11 13〉, 〈3 5 6 9 11 12 14〉, 〈3 5 6 9 12 14 16〉,
〈3 5 7 8 10 11 12〉, 〈3 5 7 8 10 12 16〉, 〈3 5 8 9 10 11 13〉, 〈3 6 8 9 10 11 12〉, 〈3 6 8 9 11 13 14〉,
〈4 5 7 8 10 11 13〉, 〈4 5 7 8 10 13 16〉, 〈4 5 7 8 11 12 15〉, 〈4 5 7 8 11 13 15〉, 〈4 5 7 8 12 14 15〉,
〈4 5 7 8 12 14 16〉, 〈4 5 7 8 13 14 15〉, 〈4 5 7 8 13 14 16〉, 〈4 5 7 10 11 12 15〉, 〈4 5 7 10 11 13 15〉,
〈4 5 7 10 13 15 16〉, 〈4 5 7 13 14 15 16〉, 〈4 5 8 9 10 11 13〉, 〈4 5 8 9 10 12 15〉, 〈4 5 8 9 10 13 15〉,
〈4 5 8 9 11 12 15〉, 〈4 5 8 9 11 13 15〉, 〈4 5 8 10 12 15 16〉, 〈4 5 8 10 13 15 16〉, 〈4 5 8 12 14 15 16〉,
〈4 5 8 13 14 15 16〉, 〈4 5 9 10 11 12 15〉, 〈4 5 9 10 11 13 15〉, 〈4 7 8 10 11 12 15〉, 〈4 7 8 10 12 15 16〉,
〈4 8 9 10 11 12 15〉, 〈4 8 9 10 11 13 15〉, 〈5 6 7 8 10 11 13〉, 〈5 6 7 8 10 11 15〉, 〈5 6 7 8 10 13 15〉,
〈5 6 7 8 11 13 15〉, 〈5 6 7 10 11 13 15〉, 〈5 6 8 9 10 12 15〉, 〈5 6 8 9 10 13 15〉, 〈5 6 8 9 11 12 15〉,
〈5 6 8 9 11 13 15〉, 〈5 6 8 10 11 12 15〉, 〈5 6 9 10 11 12 15〉, 〈5 6 9 10 11 13 15〉, 〈5 7 8 10 11 12 15〉,
〈5 7 8 10 12 15 16〉, 〈5 7 8 10 13 15 16〉, 〈5 7 8 12 14 15 16〉, 〈5 7 8 13 14 15 16〉, 〈6 7 8 10 13 15 16〉,
〈6 7 8 13 14 15 16〉, 〈6 8 9 10 11 12 15〉, 〈6 8 9 10 13 15 16〉, 〈6 8 9 11 13 14 15〉, 〈6 8 9 13 14 15 16〉.

Using simpcomp, we found that the vertex links can be obtained from the boundary of the 6-
simplex by a sequence of 0- and 1-moves. Therefore, by Lemma 5.3, vertex links are 2-stacked 5-
spheres. Thus, M6

16 ∈ K2(6), as claimed. �
The triangulation M6

16 is strongly conjectured to be tight in β8. It is part of a conjectured series of
centrally symmetric triangulations of sphere products for which tight embeddings into cross polytopes
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are conjectured. In some cases, the tightness of the embedding could be proved, see [63], [41, 6.2]
and [23, Section 6]. In particular, the sphere products presented in [41, Theorem 6.3] are part of this
conjectured series and the following holds.

Theorem 6.3. The centrally symmetric triangulations of sphere products of the form Sk × Sm with vertex
transitive automorphism groups

S1 × S1, S2 × S1, S3 × S1, S4 × S1, S5 × S1, S6 × S1, S7 × S1,

S2 × S2, S3 × S2, S5 × S2,

S3 × S3, S4 × S3, S5 × S3,

S4 × S4

on n = 2(k + m) + 4 vertices presented in [41, Theorem 6.3] all lie in the class Kmin{k,m}(k + m).

Using simpcomp, we found that the vertex links of all the manifolds mentioned in the statement
can be obtained from the boundary of a (k + m)-simplex by sequences of bistellar i-moves, 0 � i �
min{k, l} − 1. Therefore, by Lemma 5.3, the vertex links are min{k,m}-stacked (k + m − 1)-spheres.
Thus, all the manifolds mentioned in the statement are in Kmin{k,m}(k + m). Note that since these
examples all have a transitive automorphism group, it suffices to check the stackedness condition for
one vertex link only.

The preceding observations naturally lead to the following Question 6.4 as a generalization of
Question 5.5.

Question 6.4. Let d � 4 and let M be a k-Hamiltonian codimension 2 subcomplex of the (d + 2)-
dimensional cross polytope βd+2 such that M ∈ Kk(d) for some fixed 1 � k � � d−1

2 �. Does this imply
that the embedding M ⊂ βd+2 ⊂ Ed+2 is tight?

This is true for all currently known codimension 2 subcomplexes of cross polytopes that fulfill
the prerequisites of Question 6.4: The 8-vertex triangulation of the torus, a 12-vertex triangulation of
S2 × S2 due to Sparla [44,62] and the triangulations of Sk × Sk on 4k + 4 vertices for k = 3 and k = 4
as well as for the infinite series of triangulations of Sk × S1 in [33]. For the other triangulations of
Sk × Sm listed in Theorem 6.3 above, Kühnel and Lutz “strongly conjecture” [41, Section 6] that they
are tight in the (k +m + 2)-dimensional cross polytope. Nevertheless, it is currently not clear whether
the conditions of Question 6.4 imply the tightness of the embedding into the cross polytope.

In accordance with [41, Conjecture 6.2] we then have the following conjecture.

Conjecture 6.5. Any centrally symmetric combinatorial triangulation Mk+m
n of Sk × Sm on n = 2(k + m + 2)

vertices is tight if regarded as a subcomplex of the n
2 -dimensional cross polytope. Mk+m

n is contained in the

class Kmin{k,m}(k + m).
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