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Notation and Symbols

g empty set

#M cardinality of a set M

@ disjoint union

N � �1,2,3, . . .� set of natural numbers

Z set of integers (also as ring)

Zn factor ring of Z by the ideal nZ (also as ring)

a residue class of the integer a in Zn

Q,R,C sets of rational, real and complex numbers (also as fields)

F arbitrary field

Fq finite field on q elements

Fn n-dimensional vector space over the field F

En n-dimensional Euclidean space

∆d d-simplex

`v1, . . . , vd�1e d-simplex on vertex set v1, . . . , vd�1 (also abstract)

βd d-cross polytope (or d-octahedron)

Cd d-cube

P d, P convex (d-)polytope P

∂P boundary of a convex polytope P

C�P � polytopal complex of a convex polytope P

C�∂P � boundary complex of a convex polytope P

f�C� f -vector of a polytopal complex C

h�C� h-vector of a simplicial complex C

χ�C� Euler characteristic of a polytopal complex C

∂C boundary of a polytopal complex C
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Aut�C� automorphism group of a polytopal C

SC S underlying set of a polytopal complex

V �C� vertex set of a polytopal complex

skelk�C� k-skeleton of the polytopal complex C

lkC�σ� link of the face σ in the polytopal complex C

stC�σ� star of the face σ in the polytopal complex C

spanC�X� span of the vertex set X b V �C� in the polytopal complex

C

C1#C2 connected sum of two simplicial complexes C1,C2

C#k k-fold connected sum of a simplicial complexes C with

itself

C1 �C2 cartesian product of two simplicial complexes C1,C2

C1 "C2 twisted product of two simplicial complexes C1,C2

ΦA�C� bistellar move on the simplicial complex C

C1 �C2 join of two vertex-disjoint (abstract) simplicial complexes

C1 and C2

∂ boundary operator

H��C;G� homology groups of the simplicial complex C with coeffi-

cients in G

H��C� homology groups of the simplicial complex C with coeffi-

cients in Z

H��C,D;G� relative homology groups of the simplicial complex C with

a subcomplex C with coefficients in G

H��C,D� relative homology groups of the simplicial complex C with

a subcomplex C with coefficients in Z

βi�C;G� i-th Betti number of a simplicial complex C with respect

to the group of coefficients G

βi�C� i-th Betti number of a simplicial complex C with respect

to the group of coefficients Z

C1 � C2 combinatorial equivalence of two polytopal complexes

C1,C2
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k
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aSb for a, b > Z and b is an integer multiple of a
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Abstract

This work is set in the field of combinatorial topology, a mathematical field of

research in the intersection of the fields of topology, geometry, polytope theory and

combinatorics.

This work investigates polyhedral manifolds as subcomplexes of the boundary

complex of a regular polytope. Such a subcomplex is called k-Hamiltonian, if it

contains the full k-skeleton of the polytope. Since the case of the cube is well known

and since the case of a simplex was also previously studied (these are so-called

super-neighborly triangulations), the focus here is on the case of the cross polytope

and the sporadic regular 4-polytopes. By the results presented, the existence of

1-Hamiltonian surfaces is now decided for all regular polytopes. Furthermore, 2-

Hamiltonian 4-manifolds in the d-dimensional cross polytope are investigated. These

are the “regular cases” satisfying equality in Sparla’s inequality. In particular, a

new example with 16 vertices which is highly symmetric with an automorphism

group of order 128 is presented. Topologically, it is homeomorphic to a connected

sum of 7 copies of S2 � S2. By this example all regular cases of n vertices with

n @ 20 or, equivalently, all cases of regular d-polytopes with d B 9 are now decided.

The notion of tightness of a PL-embedding of a triangulated manifold is closely

related to its property of being a Hamiltonian subcomplex of some convex polytope.

Tightness of a triangulated manifold is a topological condition, roughly meaning

that any simplex-wise linear embedding of the triangulation into Euclidean space is

“as convex as possible”. It can thus be understood as a generalization of the concept

of convexity. In even dimensions, super-neighborliness is known to be a purely

combinatorial condition which implies the tightness of a triangulation. Here, we

present other sufficient and purely combinatorial conditions which can be applied
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Abstract

to the odd-dimensional case as well. One of the conditions is that all vertex links

are stacked spheres, which implies that the triangulation is in Walkup’s class K�d�.
We show that in any dimension d C 4 tight-neighborly triangulations as defined by

Lutz, Sulanke and Swartz are tight. Also, triangulations with k-stacked vertex links

and the centrally symmetric case are discussed.

Furthermore, a construction of an infinite series of simplicial complexes M2k in

rising, even dimensions is presented. It is conjectured that for each k, (i) M2k is

a centrally symmetric triangulation of a sphere product Sk � Sk, which (ii) is a

k-Hamiltonian subcomplex of the �2k�2�-cross polytope, that (iii) satisfies equality

in Sparla’s inequality. Using the software package simpcomp, it is shown that the

conjecture holds for k B 12.

2000 MSC classification: 52B05, 52B70, 53C42, 52B70, 57Q35.

Key words: Hamiltonian subcomplex, triangulated manifold, sphere products,

pinched surface, centrally-symmetric, tight, perfect Morse function, stacked polytope.
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Zusammenfassung

Diese Dissertationsschrift ist im Bereich der kombinatorischen Topologie angesiedelt,

einem Schnittbereich der Topologie, der Polytoptheorie und der Kombinatorik.

Während man in den Anfangstagen der Topologie Mannigfaltigkeiten und de-

ren topologische Invarianten meist anhand der kombinatorischen Struktur ihrer

Triangulierungen untersuchte (siehe z.B. die Lehrbücher [119] oder [115]), sich die

Berechnung der Invarianten über diesen Weg aber als sehr mühsam herausstellte,

strebte man danach, die Invarianten einer Mannigfaltigkeit ohne den Umweg über

eine Triangulierung zu berechnen. So wurden im Laufe der 1930er und 1940er Jahre

die kombinatorischen Methoden Stück für Stück durch solche algebraischer Natur

abgelöst.

Seit dem Aufkommen von Computern wurde aber den kombinatorischen Aspekten

von Mannigfaltigkeiten und ihren Triangulierungen erneut großes Interesse zuteil, da

nun die von Hand mühselige Arbeit des Umgangs mit großen Triangulierungen nicht-

trivialer Objekte und der Berechnung von deren Invarianten durch Verwendung

geeigneter Computerprogramme (siehe [51, 44, 45, 52]) dem Rechner überlassen

werden kann. Diese Entwicklung zeigt auch die große Zahl an Publikationen in

diesem Bereich während der letzten Jahre, siehe [92] für eine Übersicht.

In dieser Arbeit werden Hamiltonsche Untermannigfaltigkeiten konvexer Po-

lytope und ihre Eigenschaften untersucht. Eine Untermannigfaltigkeit M eines

polyedrischen Komplexes K heißt k-Hamiltonsch, wenn M das ganze k-Skelett von

K enthält. Diese Verallgemeinerung der Idee eines Hamiltonschen Zyklus in einem

Graphen geht zurück auf die Arbeiten [48] und [117]. Ist hier K der Randkomplex

eines konvexen Polytops, so wird die Betrachtung auch geometrisch besonders inter-

essant (siehe [78, Kap. 3]). Beispielsweise wurden in [3] geschlossene 1-Hamiltonsche
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Untermannigfaltigkeiten in bestimmten Polytopen untersucht und es gibt berühmte

auf Harold Coxeter zurückgehende Beispiele von quadrangulierten Flächen, welche

als 1-Hamiltonsche Untermannigfaltigkeiten höherdimensionaler Würfel angesehen

werden können, siehe [85]. Eine Übersicht über das Thema von Hamiltonschen

Untermannigfaltigkeiten konvexer Polytope findet sich in [77]. Während Existenz

und Klassifikation von Hamiltonzykeln in den Skeletten der regulären konvexen

3-Polytope seit langem mathematische Folklore sind (der Fall des Ikosaeders als

einzig nicht trivialer findet sich in [60]), war dieses Problem für die natürliche Verall-

gemeinerung in Form von 1-Hamiltonschen Flächen in den Skeletten der regulären

konvexen 4-Polytope außer im Fall des Simplex und des Würfels bisher offen. In

Kapitel 2 on page 39 dieser Arbeit wird die Nichtexistenz von 1-Hamiltonschen

Flächen im 24-Zell, 120-Zell und im 600-Zell gezeigt. Jedoch lässt das 24-Zell sechs

Isomorphietypen von singulären Flächen mit 4, 6, 8 bzw. 10 pinch points zu, welche

klassifiziert werden (ein pinch point ist eine singuläre Ecke v der Fläche, für welche

lk�v� � S1 @ S1 gilt). Im Fall des 120-Zells konnte auch die Existenz solcher kombi-

natorischer Pseudomannigfaltigkeiten widerlegt werden, während diese Frage für

den 600-Zell wegen ihrer in diesem Fall hohen Komplexität noch nicht entschieden

werden konnte. Die Kapitel 4 on page 75 und 5 on page 97 beschäftigen sich mit

dem zentralsymmetrischen Fall von Hamiltonschen Untermannigfaltigkeiten im

d-dimensionalen Kreuzpolytop (der Verallgemeinerung des Oktaeders). Obwohl es

einige theoretische Resultate in dem Gebiet gibt (unter anderem durch Arbeiten von

Eric Sparla [124] und Frank Lutz [90]), mangelt es doch an nicht-trivialen Beispielen,

die beispielsweise die Schärfe von gewissen Ungleichungen zeigen können. Obwohl

der Beweis der Existenz einer vermuteten Serie von triangulierten Sphärenprodukten

Sk�1 � Sk�1 im Kreuzpolytop in seiner vollen Allgemeinheit hier weiter schuldig

geblieben werden muss, sind in Kapitel 5 zumindest Teilergebnisse und ein Beweis

der Existenz der Triangulierungen für k B 12 aufgeführt. Diese Serie würde eine in

[90, Kap. 4.2, S. 85] aufgestellte Vermutung beweisen und die Schärfe einer in [124,

Kap. 3] aufgestellten Ungleichung in beliebiger Dimension zeigen.

Die Eigenschaft eines Simplizialkomplexes, eine Hamiltonsche Untermannigfal-

tigkeit in einem Polytop zu sein, ist eng mit der Eigenschaft seiner “Straffheit”

verbunden, d.h. der Eigenschaft, dass alle PL-Einbettungen des Komplexes in einen
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euklidischen Raum “so konvex wie möglich” sind. Im Fall von Untermannigfal-

tigkeiten des Simplex spricht man auch von straffen Triangulierungen. Straffheit

ist in diesem Sinne eine Verallgemeinerung des Begriffs der Konvexität, der nicht

nur durch topologische Bälle und deren Randmannigfaltigkeiten erfüllt werden

kann. Zum Begriff der Straffheit siehe [78] und zu einer Übersicht bekannter straffer

Triangulierungen [84]. Kapitel 3 dieser Arbeit befasst sich mit der Untersuchung

einer speziellen Klasse von triangulierten Mannigfaltigkeiten (nämlich solcher, die

in Walkups Klasse K�d� liegen, d.h. solcher, deren Eckenfiguren samt und sonders

gestapelte Sphären sind) und leitet für diese Mannigfaltigkeiten kombinatorische

Bedingungen her, welche die Straffheit ihrer PL-Einbettungen implizieren. Dies ist

außerdem die erste bekannte rein kombinatorische Bedingung, welche die Straffheit

einer Triangulierung einer ganzen Klasse von Mannigfaltigkeiten auch in ungeraden

Dimensionen d C 5 impliziert.

Wie bereits oben beschrieben, spielte der Computer bei der Untersuchung und der

Erzeugung von den in dieser Arbeit untersuchten Objekten eine entscheidende Rolle.

In Kooperation mit meinem Kollegen Dipl.-Math. Jonathan Spreer entwickelte ich

deshalb ein Erweiterungspaket zum Softwaresystem GAP, welches die Konstruktion

und Untersuchung von simplizialen Komplexen im GAP-System ermöglicht und

welches wir auf den Namen simpcomp [44] tauften. simpcomp ist inzwischen schon

recht umfangreich und erfreut sich in der GAP-Gemeinschaft anscheinend einer

gewissen Beliebtheit. Das Programmpaket ist in Anhang C in seinen Grundzügen

beschrieben.
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Introduction

In fall 2007 I became a PhD student of Wolfgang Kühnel at the University of

Stuttgart. Back then I had already worked some years under his supervision as a

research assistant for the DFG project Ku 1203/5. Working for the project titled

“Automorphism groups in combinatorial topology” aroused my interest in the field.

Soon after I was employed by Wolfgang Kühnel and Wolfgang Kimmerle at the

successor DFG-granted project Ku 1203/5-2 here in Stuttgart. Most of the results

presented in the work at hand were achieved during my employments for the two

projects.

This work is set in the field of combinatorial topology (sometimes also referred to

as discrete geometric topology), a field of research in the intersection of topology,

geometry, polytope theory and combinatorics. The main objects of interest in

the field are simplicial complexes that carry some additional structure, forming

combinatorial triangulations of the underlying PL manifolds.

From the first days, combinatorial methods were used in (algebraic) topology.

Although the interest in combinatorial decompositions of manifolds in form of

simplicial complexes declined for some time when the (with regard to cell numbers)

more efficient cell decompositions of manifolds were discovered, they again gained

popularity in the topological community with the beginning of the digital age. Now

the tedious task of working with large triangulations of nontrivial objects by hand

could be delegated to a computer; additionally the structure of simplicial complexes

is very well suited for a digital representation and the algorithmic investigation

with the help of a computer.

Some typical questions researched in the field include for example: (i) Upper and

lower bounds on vertex and face numbers, i.e. the investigation of upper and lower
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bounds on the number of higher-dimensional faces w.r.t. the number of vertices

of a simplicial polytope or more generally a triangulation of a manifold (possibly

including additional variables, such as Betti numbers), (ii) Minimal triangulations,

i.e. the question of the minimal number of vertices needed for a combinatorial

triangulation of a triangulable topological manifold M of a given topological

type, (iii) Questions of existence of combinatorial triangulations of some given

topological manifold, (iv) Questions relating purely combinatorial properties of the

triangulations to geometrical properties of their embeddings.

In this work, the focus is on the last two points given above. Specifically, the

question of the existence and the investigation of the properties of so-called Hamil-

tonian submanifolds in certain polytopes will be of interest in the following. Here,

a k-Hamiltonian submanifold of a polytope is a submanifold that contains the full

k-skeleton of the polytope. Since the case of Hamiltonian submanifolds of the cube

is well known and since the case of a simplex was also previously studied a focus is

given on the case of the cross polytope and the sporadic regular 4-polytopes: In

Chapter 2 the existence of so-called Hamiltonian surfaces in the regular convex

4-polytopes is investigated (these are surfaces that contain the full 1-skeleton of

the polytope). Surprisingly, it turned out that neither the 24-cell, the 120-cell, nor

the 600-cell admit such Hamiltonian surfaces in their boundary complexes. By

our results the existence of 1-Hamiltonian surfaces is now decided for all regular

polytopes.

The property of a combinatorial submanifold of being a Hamiltonian subcom-

plex of some higher-dimensional polytope is closely related to a property of PL

embeddings of combinatorial manifolds referred to as tightness. Roughly speaking,

tightness is a generalization of the notion of convexity in the sense that a manifold

is “as convex as its topology lets it be” if it is tight, i.e. tightness can be understood

as a notion of convexity that also applies to objects other than topological balls

and their boundary manifolds. This relation (stemming from the field of differential

geometry) was studied extensively among others by Thomas Banchoff, Nicolaas

Kuiper and Wolfgang Kühnel. Chapters 3 and 4 investigate properties of triangula-

tions related to their tightness. Chapter 3 contains the discussion of the conditions

for the tightness of members of a certain class of triangulated manifolds, namely
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manifolds in Walkup’s class K�d�, i.e. manifolds that have stacked vertex links. For

this class a purely combinatorial condition implying tightness of the embedding is

given. This condition holds in arbitrary (also odd) dimension d C 4 and seems to

be the first such condition for odd dimensions.

Chapter 4 investigates in greater generality on Hamiltonian submanifolds of

cross polytopes, i.e. the centrally symmetric case of Hamiltonian submanifolds and

conditions for the tightness of such triangulations.

Chapter 5 contains the construction of a conjectured series of centrally symmetric

triangulations of sphere products Sk � Sk as Hamiltonian subcomplexes of higher-

dimensional cross polytopes. Although firmly believed to be true by the author, the

statement is unfortunately still a conjecture as of the time being. None the less the

findings during the research on the problem and partial results are written down.

Quite some of the problems of this work have been solved with – or at least were

investigated upon with – the help of a computer. The programs used are all written

in GAP, the well-known system for discrete computational algebra, and can be found

in the appendices. During my time as PhD student I worked in cooperation with

Jonathan Spreer at the University of Stuttgart and we developed simpcomp, an

extension package to the GAP system that provides a wide range of constructions

and tools for simplicial complexes; see Appendix C for a short description of the

package and its functionality. If you want to get to know the package in more detail,

then there is also an extensive manual available.

Stuttgart, November 2010
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Chapter 1

Basics

This chapter contains a brief introduction to the fields of polytope theory and the

theory of triangulated manifolds. Furthermore, concepts developed in these fields

that will be used throughout this work are discussed, as for example simplicial

homology and cohomology, bistellar moves on triangulations, the Dehn-Sommerville

equations and polyhedral Morse theory. Additionally, a short tear off of the theory

of tight triangulations and an overview of upper and lower bounds for triangulated

manifolds will be given.

1.1 Polytopes, triangulations and combinatorial mani-

folds

Polytopes

Polytopes are fundamental geometric objects that have been studied by generations

of mathematicians ever since – the foundations of polytope theory were laid out by

Euclid in his Elements [47] who was the first to study the regular convex polytopes

in dimension three, the so-called Platonic solids (see Figure 1.3 on page 4).

The concept of polytopes seems to date back to the Swiss mathematician Ludwig

Schläfli, the term polytope seems to be coined by Reinhard Hoppe [62]. After being

forgotten for quite a while, it was by the works of Branko Grünbaum [56] that the

sleeping beauty polytope theory was revived and since then stood in the focus of
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Chapter 1. Basics

modern mathematical research. For an introduction to the field, see for example

the books [34, 56, 139] or [97].

Definition 1.1 (convex polytope) The convex hull P of finitely many points in

Ed not lying in a common hyperplane is called convex d-polytope – P is sometimes

also referred to as V-polytope as it is described by its vertex set. Equivalently, a

d-polytope P can be described as the bounded intersection of finitely many closed

half spaces in Ed such that the intersection set is of dimension d. In this case P is

referred to as H-polytope. The two definitions are equivalent, see [139, Lecture 0].

Since this work focuses on convex polytopes, we will just write polytope from

now on, when actually meaning a convex polytope. Each d-polytope P consists of

faces and its set of k-faces is referred to as the k-skeleton of P .

Definition 1.2 (faces, skeleton)

(i) The intersection of a d-polytope P with a supporting hyperplane h ` Ed of P

is called k-face of P if dim�h 9 P � � k. A 0-face of P is also-called vertex, a

1-face is called edge and a �d � 1�-face is called facet of P .

(ii) For a d-polytope P the k-dimensional skeleton (or k-skeleton) denoted by

skelk�P � is the set of all i-dimensional faces of P , i B k. The face-vector or

f -vector of P counts the number of i-faces of P for all 0 B i B d,

f�P � �� �f0, . . . , fd�1, fd�,
where fi equals the number of i-faces of P . Note that fd � 1 always holds here.

In some cases it is of use to formally set

f�P � �� �f�1, f0, . . . , fd�1, fd�
with f�1 �� 1, as the empty set has dimension �1 and is contained in all faces

of P .

See Figure 1.1 on the facing page for an illustration of the skeletons of the

ordinary 3-cube as convex 3-polytope. For polytopes, the notion of a neighborhood

of a vertex can be defined as follows.
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1.1. Polytopes, triangulations and combinatorial manifolds

Figure 1.1: From left to right: The 0-, 1- and 2-skeleton of the 3-cube.

v

lk(v) = 

Figure 1.2: A plane separating one vertex v of a 3-cube from all other of its vertices.
The intersection of the cube with the plane is the vertex link of v,
written lk�v�, in this case a triangle.

Definition 1.3 (vertex figure) For each vertex v of a convex d-polytope P the

vertex figure (or vertex link) of v in P , written as lkP �v� or just lk�v�, is defined

as the �d � 1�-polytope which occurs as the intersection of a hyperplane with P

separating v from all other vertices of P .

See Figure 1.2 for an example drawing showing a vertex link in a 3-polytope.

Throughout this work we will most of the time only be interested in the special

class of so-called regular polytopes, which can be defined recursively.

Definition 1.4 (regular polytope) A d-polytope P for which all facets are con-

gruent regular �d � 1�-polytopes and for which all vertex links are congruent regular

�d�1�-polytopes is called regular, where the regular 2-polytopes are regular polygons.

In dimension d � 2, every convex regular polygon is a regular polytope and

hence there exist infinitely many regular polytopes in this dimension. In dimension

d � 3, there exist five regular convex polytopes, the so-called Platonic solids, see

Figure 1.3 on the following page and Section 2.1 on page 40. In dimension d � 4,

there exist six regular convex polytopes, the 4-simplex, the 4-cube and its dual the

4-octahedron, the 24-cell and the 120-cell and its dual the 600-cell, see Section 2.2

on page 42. In dimensions d C 5 the only regular convex polytopes are the d-simplex

3



Chapter 1. Basics

Figure 1.3: The five regular convex 3-polytopes, from left to right: the tetrahedron,
the cube and its dual the octahedron, the dodecahedron and its dual
the icosahedron.

Figure 1.4: From left to right: the ��1�-simplex (the empty set), the 0-simplex (a
vertex), the 1-simplex (a line segment), the 2-simplex (a triangle), the
3-simplex (a tetrahedron) and a Schlegel diagram of the 4-simplex, see
Section 1.8 on page 36.

(see Definition 1.5), the d-cube and its dual, the d-cross polytope or d-octahedron

(see Chapter 4 on page 75).

A special kind of regular polytope – and in fact, the “smallest” regular polytope

with respect to the number of vertices in any given dimension – is the simplex. See

Figure 1.4 for a visualization of some simplices of small dimensions.

Definition 1.5 (simplex, simplicial and simple polytopes) The d-simplex ∆d

is the convex hull of d � 1 points in general position in Ed. ∆d has �d�1
i�1

� i-faces. A

d-polytope P is called simplicial if for any i @ d, each of its i-faces is an i-simplex.

Here it suffices to ask that all facets of P are simplices. P is called simple if its

dual is simplicial.

The d-simplex ∆d has another specialty: it is the only d-polytope for which

any tuple of vertices is the vertex set of a face of ∆d. Thus, it is said to be

�d � 1�-neighborly.

Definition 1.6 (neighborliness, neighborly polytope) A d-polytope P is called

k-neighborly if any tuple of k or less vertices is the vertex set of a face of P . A


d2�-neighborly polytope is called neighborly polytope as no d-polytope other than

the d-simplex ∆d can be more than 
d2�-neighborly.
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1.1. Polytopes, triangulations and combinatorial manifolds

Note that any neighborly polytope is necessarily simplicial.

Polytopal and simplicial complexes

Each d-polytope P can be assigned its polytopal complex and boundary complex

as defined below. See Figure 1.5 on the following page for a visualization of the

boundary complex of the 3-cube.

Definition 1.7 (polytopal complex, [139])

(i) A polytopal complex C is a finite collection of convex polytopes in Ed(called

facets) that satisfies the following conditions:

a) C contains the empty polytope g > C,

b) if P > C, then C also contains all faces of P ,

c) if P,Q > C, then P 9Q is either empty or a common face of P and Q.

The dimension of C is the maximal dimension of a facet of C. If all facets

of C have the same dimension, C is called pure. The k-skeleton and the

f -vector of a polytopal complex is explained in the same way as for polytopes.

(ii) The underlying set SC S of C is the union of all polytopes of C as a point set

in Ed:

SC S �� �
Pi>C

Pi ` E
d.

(iii) Given a d-polytope P , the set

C�P � �� d

�
i�0

skeli�P �
of all faces of P is a polytopal complex, the polytopal complex of P . The set

of all proper faces of P also forms a polytopal complex,

C�∂P � �� d�1

�
i�0

skeli�P �.
It is called the boundary complex C�∂P � of P .
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Chapter 1. Basics

Figure 1.5: The 3-cube (left) and its boundary complex (right), where the faces of
the different dimensions are drawn in different shades of gray.

wv

Figure 1.6: The vertex star st�v� (drawn shaded) and the vertex link lk�v� (drawn
as thick line) of the vertices v,w in two 2-dimensional complexes.

(iv) Let C be a polytopal complex and D ` C such that D is a polytopal complex.

Then D is called (polytopal) subcomplex of D.

In order to establish the notion of a neighborhood in polytopal complexes, one

can define the star and the link of faces in polytopal complexes.

Definition 1.8 (star and link, see [139]) Let σ be a face of some polytopal com-

plex C. Then the star of σ in C is defined as the polytopal complex of facets of C

that contain σ as a face, and their faces:

stC�σ� �� �τ > C � §P >C � σ ` P, τ face of P� .
The link of σ in C then is

lkC�σ� �� �τ > stC�σ� � σ 9 τ � g� .
Whenever it is clear what the ambient complex is, we will not write lkC�σ� and

stC�σ�, but just lk�σ� and st�σ�, respectively.

See Figure 1.6 for an illustration of the star and the link of vertices in two

2-dimensional complexes.
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1.1. Polytopes, triangulations and combinatorial manifolds

Figure 1.7: Two collections of simplices, a (non-pure) 2-dimensional simplicial
complex on the left and a collection of 2-simplices that is not a simplicial
complex on the right.

Note that for the boundary complex C�∂P � of a simplicial polytope P , the two

notions of a vertex figure in P (see Definition 1.3 on page 3) and the link of the

corresponding vertex in C�∂P � (see Definition 1.8) coincide, cf. Figure 1.6 (left),

whereas in general this does not hold for arbitrary polytopal complexes, cf. Fig-

ure 1.6 (right). In the latter case the corresponding vertex figure in the polytope

would be a quadrangle and not an 8-gon. If one were to define a notion that

generalizes the vertex figure also for non-simplicial polytopes, one would have to

define the star and link as in [46]. Keep in mind though, that the definition given

in [46] is not compatible to the one used in this work.

In what follows, we will work with a special class of polytopal complexes most of

the time.

Definition 1.9 (simplicial complex) A polytopal complex consisting only of sim-

plices is called simplicial complex.

See Figure 1.7 for an example of a set of simplices that forms a simplicial complex

(left) and for one that does not (right).

As we are in most cases only interested in the topology of a simplicial complex,

we will work with a purely combinatorial representation of the complex as defined

below.

Definition 1.10 (abstract simplicial complex) By labeling the vertices of a

simplicial complex C with the natural numbers 1 to n one can identify each k-face

of C with a set of cardinality k � 1. This way a geometrical simplicial complex C

can be identified with its so-called abstract simplicial complex (or face lattice) as a

set of finite sets associated with the faces of C. The face lattice carries the structure
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Figure 1.8: The 7 vertex triangulation of the torus, left: geometrical simplicial com-
plex, right: its face lattice. Vertices with the same labels are identified.
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Figure 1.9: A non-pure polytopal complex (left) and its associated Hasse diagram
(right).

of a partially ordered set (or poset, for short, see [133]), where the partial order is

given by the inclusion.

An abstract simplex on the vertices v1, . . . , vn will be denoted by `v1 . . . vne in

the following. See Figure 1.8 for a 7-vertex triangulation T of the torus T 2 as a

geometrical simplicial complex (left) and as an abstract simplicial complex in form

of its face lattice (right). It is known as Möbius’ Torus as it was already known to

August Möbius [102]. Figure 1.9 shows another example of a polytopal complex

and its face lattice visualized via its Hasse diagram.

Two abstract simplicial complexes are considered equal if they are combinatorially

isomorphic.

Definition 1.11 (combinatorial equivalence) Two simplicial complexes C and

D are called combinatorially isomorphic (or combinatorially equivalent), written

8



1.1. Polytopes, triangulations and combinatorial manifolds

C � D, if their face lattices are isomorphic. This means that there exists a face

respecting bijective mapping f of their vertex sets, i.e. a map f that maps faces to

faces and if x, y > C, x ` y, then f�x� ` f�y�. A representative of an equivalence

class of the equivalence relation � represents a combinatorial type of simplicial

complexes. The set of automorphisms of a simplicial complex C forms a group, the

automorphism group Aut�C� of C.

There are topological types of complexes for which only one combinatorial type

exists for a given fixed number of vertices. These types are called combinatorially

unique. Möbius’ Torus is one example of such a combinatorially unique complex,

see [24].

Note that the automorphism group of an abstract simplicial complex on n vertices

is always a subgroup of Sn, the symmetric group on n elements. It consists of all

face respecting bijective mappings f � C � C.

In the course of this work we will also be interested in a special class of simplicial

complexes, so called centrally symmetric complexes. These can be characterized on

a purely combinatorial level as follows.

Definition 1.12 (abstract central symmetry) An abstract simplicial complex

C is called centrally symmetric if Aut�C� contains an element of order two that

acts fixed point free on the face lattice of C.

The definition generalizes the following geometrical situation: If C can be inter-

preted as a subcomplex of a convex polytope P such that C contains all vertices

of P , then in Definition 1.12 the underlying complex SC S (as subcomplex of P ) is

centrally symmetric in the usual sense, i.e. there exists a z > Ed such that

x > SC S � 2z � x > SC S.

Triangulated and combinatorial manifolds

In the early days of topology manifolds were triangulated in order to compute

topological invariants, see [119].

9



Chapter 1. Basics

Definition 1.13 (triangulable and triangulated manifold) A topological ma-

nifold M for which there exists a simplicial complex C such that M is homeomorphic

to SC S is called triangulable manifold. Any simplicial complex C with SC S �M is

referred to as a triangulation of M .

Of course a given triangulable manifold can a priory be triangulated in many

different ways. This means that if one wants to compute topological invariants of

the underlying manifold using triangulations one has to show that the invariant

calculated does not depend on the choice of the triangulation. One such invariant

are the homology groups, see Section 1.2 on the next page. Note also that since a

simplicial complex may only consist of finitely many simplices, every manifold M

that can be triangulated is necessarily compact. Indeed, the converse is also true in

low dimensions.

Theorem 1.14 (Rado 1924 & Moise 1954 [103])

For every compact topological manifold M of dimension d B 3 there exists a combi-

natorial triangulation of M .

Whether an analogue statement also holds for higher dimensions d C 4 is not

clear as of today.

Since we will work with PL manifolds1 (for an introduction to PL topology see the

books [115] and [63], for more recent developments in the field see [92, 36]) and since

the topological and the combinatorial structure need not be compatible in general2,

a slightly stronger notion of a so-called combinatorial manifold is introduced here

as follows.

Definition 1.15 (combinatorial manifold) A simplicial complex C that is a

triangulation of the topological manifold M is called combinatorial manifold of

dimension d or combinatorial triangulation of M if the link of any i-face of C is a

standard PL �d�i�1�-sphere. A standard PL �d�i�1�-sphere is a simplicial complex

which is piecewise linearly homeomorphic to the boundary of the �d � i�-simplex

∂∆d�i.
1A PL structure on a manifold is an atlas of charts which are compatible to each other by

piecewise linear coordinate transforms.
2There exists a triangulation in form of the so-called Edwards sphere as a double suspension of

a homology 3-sphere which does not carry a PL structure [22].
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1.2. Simplicial homology and cohomology

S’S pp

Figure 1.10: Sketch of a (part of a) surface S transformed into a pinched surface
S� – in the polyhedral case S� is obtained from S by subsequent
identification of a finite number of vertex pairs of S.

This definition implies that M carries a PL structure. Conversely, every PL

manifold admits a triangulation which is a combinatorial manifold in the sense of

Definition 1.15 on the facing page. See Figure 1.8 on page 8 for an example of a

combinatorial triangulation of the torus.

A combinatorial d-pseudomanifold is an abstract, pure simplicial complex M of

dimension d such that all vertex links of M are combinatorial �d � 1�-manifolds

in the sense of Definition 1.15. If the vertex link of a vertex v of M is not PL

homeomorphic to the �d � 1�-simplex, that vertex of M is called a singular vertex

of M .

In the two-dimensional case, a special case of pseudomanifolds are the so called

pinch point surfaces – here the vertex links are homeomorphic to 1-spheres or

disjoint unions of 1-spheres, see Figure 1.10.

1.2 Simplicial homology and cohomology

Why bother triangulating manifolds at all? One of the reasons is to be able to

efficiently compute topological invariants of the manifolds via their triangulations.

In addition to the powerful, but – apart from the fundamental group π1 – hard to

compute homotopy groups, homology and cohomology groups have proven to be

valuable tools for the task of investigating the topological structure of manifolds

in terms of algebraic invariants. We will only deal with the simplicial case in the

following as we will not need the more general singular theory in this work – but we

point out that the constructions are the same in the latter case. For a comprehensive

introduction to the subject see the books [105] (the notation of which we will allude

to), [123], or [110].
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Homology groups

From now on let G be an arbitrary but fixed abelian group, the group of coefficients.

If not stated otherwise, we will assume that G � �Z,��. The goal in what follows is

to define the “homology groups of a simplicial complex with coefficients in G”.

Definition 1.16 (oriented simplex) Let K be a simplicial complex and let g x

σ > K be a face of K. Then an orientation of σ is an equivalence class of the

arrangements of its vertex set V �σ�, where two arrangements are considered equiva-

lent if they differ by an even permutation. In the following we will write �v1, . . . , vk�
for the orientation induced by the vertex ordering v1 @ � � � @ vk, and ��v1, . . . , vk� for

the opposite orientation. Every linear ordering v1 @ � � � @ vn of the vertex set V �K�
of K thus induces an orientation on every face of K.

Any simplicial complex can be given an ordering of its vertices such that the

following construction is well-defined.

Definition 1.17 (simplicial chains and chain group) Let K be a simplicial

complex and let G be a group of coefficients. A q-chain of K with coefficients in G

is a formal linear combination

Q
σ>skelq�K�

λσσ,

with λσ > G and in which every simplex σ may only appear once.

The set of all q-chains of K with coefficients in G forms an additive group (where

the addition is defined coefficient-wise for simplices with the same orientation)

and is called the q-th chain group of K with coefficients in G, written Cq�K;G�.
Cq�K;G� is a free abelian group of rank fq�K�. For q @ 0 and q A dim�K� we set

Cq�K;G� �� ��0�,�� and for ease of notation often just write Cq�K;G� � 0 from

now on.

We call the sequence of groups �Cq�K;G��q>Z the chain complex C��K;G�
induced by the complex K.
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1.2. Simplicial homology and cohomology

Definition 1.18 (boundary map) The q-th boundary map ∂q is the group ho-

momorphism ∂q � Cq�K;G� � Cq�1�K;G�, given by

∂q � �v1, . . . , vq�1�( q�1

Q
i�1

��1�i�1�v1, . . . , v̂i, . . . , vq�1�.
Here the notation �v1, . . . , v̂i, . . . , vq�1� denotes the �q � 1�-simplex �v1, . . . , vi�1, vi�1,

. . . , vq�1� without the vertex vi.

Using the boundary map, we can define cycles and boundaries as follows.

Definition 1.19 (cycles and boundaries) Let K be a simplicial complex and

let G be a group of coefficients. The q-th cycle group of K with coefficients in G is

the group

Zq�K;G� �� ker�∂q� � �σ > Cq�K;G� � ∂q�c� � 0�,
the q-th boundary group of K with coefficients in G is the group

Bq�K;G� �� im�∂q�1� � �∂q�1�σ� � σ > Cq�1�K;G��.

Note that the groups Zq�K;G� and Bq�K;G� are subgroups of the free group

Cq�K;G� and thus again free.

As the boundary map suffices the identity ∂q X ∂q�1 � 0 (this follows by explicit

calculation), one has Bq�K;G� b Zq�K;G� and the following construction is well

defined.

Definition 1.20 (homology groups) Let K be a simplicial complex and let G

be a group of coefficients. The q-th homology group of K with coefficients in G is

the group

Hq�K;G� �� Zq�K;G�~Bq�K;G�.
The integer βq � rankGHq�K;G� is called the q-th Betti number of K with respect

to the group coefficients G.

13
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For G � Z, the homology groups can be written in the form

Hq�K; Z� � Zβq `Zt1 ` � � � `Ztk

with tiSti�1 by virtue of the fundamental theorem of finitely generated abelian

groups. From now on we will fix G � Z as our group of coefficients unless stated

otherwise.

So far so good. But it remains to show that the homology groups are indeed a

topological invariant.

Theorem 1.21

Let K, L be simplicial complexes that are homotopy equivalent and let G be a group

of coefficients. Then H��K;G� �H��L;G�.

This is shown in a few steps which are sketched in the following. First it is shown

that simplicial maps f �K � L (i.e. maps f that map simplices of K to simplices

of L) induce homomorphisms f# � C��K;G� � C��L;G� on the chain complexes

induced by K and L. These in term induce maps f� �H��K;G� � H��L;G� on

the homology, where chain homotopic maps f# and g# induce identical maps f�

and g� on the homology groups. Now since (i) any continuous map c � SK S � SLS
can be approximated by a simplicial map on a sufficiently subdivided triangulation,

(ii) homotopic maps are chain homotopic after a suitable subdivision and (iii) the

induced mappings on the homology are invariant under the process of subdivision,

it follows altogether that the simplicial homology groups are homotopy invariants

and therefore of course also topologically invariant.

Using homology groups we can define a special class of combinatorial pseudoman-

ifolds, the so called homology d-manifolds, as simplicial complexes for which each

vertex link has the same homology as the �d� 1�-simplex, but not necessarily is PL

homeomorphic to the �d�1�-simplex. Eulerian d-manifolds are defined analogously,

but here the condition on the vertex links is even weaker, namely that they all have

the same Euler characteristic as the �d � 1�-sphere, as defined below.

Knowing that the simplicial homology groups are homotopy invariants we can

define another very important topological invariant of a triangulated manifold, it’s

Euler characteristic.
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Definition 1.22 (Euler characteristic) Let K be a simplicial complex of dimen-

sion d and let G be an abelian group of coefficients. The Euler characteristic of K

is a topological invariant given by the alternating sum

χ�K� �� β0�K;G��β1�K;G��� � ����1�dβd�K;G� � d

Q
i�0

��1�i rankHi�K;G�. (1.1)

Interestingly, the Euler characteristic of a simplicial complex can be computed

without knowing anything about its homology groups.

Theorem 1.23 (Euler-Poincaré formula)

Let K be a simplicial complex of dimension d and G an abelian group of coefficients.

Then the following holds:

χ�K� � d

Q
i�0

��1�ifi�K� � d

Q
i�0

��1�iβi�K;G�.

Note that on the one hand the f -vector is not a topological invariant (but

invariant under the choice of G), whereas on the other hand the Betti numbers are

topologically invariant but not invariant under the choice of G.

1.24 Remark The definition of the Euler characteristic χ can be naturally extended

to any topological space for which equation (1.1) remains meaningful, e.g. arbitrary

polytopal complexes or more generally topological manifolds that can be triangulated

or decomposed into cell complexes.

Apart from the ordinary homology groups of a complex one is often interested in

the relative homology of a pair of complexes K � `K, i.e. the homology groups of

K modulo K �.

Definition 1.25 (relative homology) Let G be an abelian group, K a simplicial

complex and A `K a subcomplex. Then the set

Cp�K,A;G� �� Cp�K;G�~Cp�A;G�
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of relative chains of K modulo A with coefficients in G carries the structure of a

free abelian group. As the restriction of the boundary operator ∂SA is well defined

on C��A;G�, one can define the relative cycle groups Zp�K,A;G�, the relative

boundary groups Bp�K,A;G� and the relative homology groups Hp�K,A;G� with

coefficients in G analogously as for the ordinary homology groups.

The natural inclusion map ι and the natural projection map π yield a short exact

sequence of chain complexes.

0 � C��A;G� ι
� C��K;G� π

� C��K,A;G� � 0.

The relative homology groups H��K,A;G� cannot “see what happens in A”, cf.

[105, Theorem 27.2].

Theorem 1.26 (Excision theorem)

Let A and U be subspaces of the topological space X such that U ` int�A� and both

pairs �X,A�, �X�U,A�U� are triangulable. Then the natural inclusion map induces

an isomorphism

Hk�X�U,A�U ;G� �Hk�X,A;G�,
where G is an abelian group of coefficients.

Since every short exact sequence of chain complexes induces a long exact sequence

of homology groups, we have the following

Theorem 1.27 (long exact sequence for the relative homology)

Let K be a simplicial complex and A b K be a subcomplex. Then there is a long

exact sequence

. . . � Hk�1�K,A;G�
∂�
� Hk�A;G�

ι�
� Hk�K;G�

π�
� Hk�K,A;G�

∂�
� Hk�1�A;G�

ι�
� . . . ,

where G is an abelian group of coefficients.

Using homology groups we can define the notion of an orientation of a triangulated

manifold as follows.

16
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Definition 1.28 (orientation) Let M be a connected d-manifold and let G be an

abelian group of coefficients. Then for each point x >M the relative homology

Hd�M,M��x�;G�
is free of rank 1 by excision. A G-orientation of M is the map

M �Hd�M,M��x�;G�
that maps each point x >M to a generator ωx of Hd�M,M��x�;G�, subject to the

following condition: for all x >M there exists a neighborhood U of x and an element

ωU > Hd�M,M�U ;G� such that for all y > U the natural map Hd�M,M�U ;G� �
Hd�M,M��y�;G� satisfies ωU ( ωy. Such a manifold is also called G-orientable,

where the usual choice is G � Z. If M cannot be given an Z-orientation, M is

called non-orientable, otherwise it is said to be orientable.

Famous examples of non-orientable manifolds are the Möbius strip and the Klein

bottle. Note that for G � Z2 the choice of generator above is unique so that all

manifolds are Z2-orientable.

Orientability also carries over to triangulations of manifolds. In terms of a

triangulated manifold M the question of orientability simplifies to the question

of existence of a linear ordering of the vertices v1, . . . , vn of M (and its induced

orientation �v1, . . . , vn�) subject to the condition that each �d � 1�-face of M must

occur in two opposite orientations in the two facets it is contained in.

Cohomology groups

By dualizing the notions developed for homology groups, we obtain the so-called

cohomology groups. On the one hand this natural construction has the advantage

of carrying more structure than the homology groups (more on that later) while

being less geometrically intuitive on the other hand.

Definition 1.29 (cochain complex) A series Ck of abelian groups together with

a series of homomorphisms dk � Ck � Ck�1 with dk�1 X dk � 0 is called a cochain

complex C� � �Ck, dk�k>Z.
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Definition 1.30 (cohomology groups) Let K be a simplicial complex, G an

abelian group and let C��K; Z� be the chain complex of the simplicial homology

groups of K with integer coefficients. Then C� � �Ck, dk� defined by

Ck
�� Hom�Ck,G�

and dk�f� �� f X ∂k�1 is a cochain complex and the cohomology groups

Hk�K;G� �� ker�dk�~ im�dk�1�
of C� are called simplicial cohomology groups of K with coefficients in G.

Akin to the homology groups, it can be shown that the cohomology groups

are topological invariants in the sense that two homotopy equivalent spaces have

isomorphic cohomology groups. Generally speaking, homology and cohomology

share many properties, as the dual construction already suggests. For certain

complexes this becomes particularly apparent.

Theorem 1.31 (Poincaré duality)

Let M be a connected closed triangulable n-(homology-)manifold. Then

Hk�M ;G� �Hn�k�M ;G�
holds for all k and for arbitrary coefficient groups G, if M is orientable and for

any M , if G � Z2.

Here a homology d-manifold is a pure simplicial complex of dimension d such

that all vertex links have the same homology as the �d � 1�-sphere.

So why bother studying cohomology groups at all? As already mentioned earlier,

the cohomology groups carry more structure than the homology groups. The

cohomology groups form a ring, the so-called cohomology ring, by virtue of the

following product map endowing it with a graded structure. We will use elements

of a commutative ring R with unity as our coefficients in the following.
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Definition 1.32 (cup product) Let K be a simplicial complex with a linear

ordering of its vertices v0 @ � � � @ vn and let R be a ring of coefficients which is

commutative and has a unity element. The simplicial cup product with coefficients

in R is given by the homomorphism

�� Cp�K;R�aCq�K;R� � Cp�q�K;R�,
defined by

`cp � cq, �v0, . . . , vp�q�e � `cp, �v0, . . . , vp�e � `cq, �vp, . . . , vp�q�e,
if v0 @ � � � @ vp�q in the given ordering and where the operation � on the right hand

side denotes the multiplication in R. The cochain cp � cq is referred to as the cup

product of the cochains cp and cq. The map � is bilinear and associative and induces

a bilinear and associative map

��Hp�K;R�aHq�K;R� � Hp�q�K;R�,
which is independent of the ordering of the vertices of K. The cup product is

anti-commutative in the following sense:

αp � βq � ��1�pqβp � αq,
where αp >Hp�K;R� and βq >Hq�K;R�.

Together with the cup product, the external direct sum of all cohomology groups

>pC0Hp�K;R� is endowed with the structure of a non-commutative but associative

ring with unity, the cohomology ring of K with coefficients in R.

The Poincaré duality 1.31 on the facing page manifests itself in the cohomology

ring, as can be seen in the following result.

Theorem 1.33 (dual pairing)

Let F be a field and let M be a triangulated, closed, F-orientable d-manifold. Then

for each 0 B k B d, the cup product induces the following a non-degenerate bilinear
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map,

� �Hk�M ; F�aHd�k�M ; F� � Hd�M ; F� � F,

For two element α >Hk�M ; F�, β >Hd�k�M ; F�, the product α � β is referred to as

intersection product of α and β.

In particular, for an orientable, closed, triangulated manifold M of dimension

4n, one can define its intersection form as follows:

qM � H2n�M ; Z� � H2n�M ; Z� � Z

�a , b� ( `a � b, �M�e ,
i.e. as the bilinear map that evaluates the cup product of two 2n-cocycles α and β

on the fundamental cycle �M� of the manifold M given by its orientation. Note that

the same construction generalizes to the non-orientable case, using F2-coefficients

for the homology groups.

The intersection form qM carries vital topological information of the manifold

M . In particular, Michael Freedman used the intersection form to classify simply-

connected topological 4-manifolds, see [49].

1.3 The Dehn-Sommerville equations

The Dehn-Sommerville equations establish relations between the numbers of faces

of simplicial polytopes and triangulated manifolds. For simplicial polytopes, they

were proved in dimension d B 5 and conjectured for higher dimensions by Max

Dehn [37] in 1905 and finally proved by Duncan Sommerville [122] in 1927. There

also exists a version of the Dehn-Sommerville equations for triangulated manifolds

given below.

Theorem 1.34 (Dehn-Sommerville equations for manifolds, [78])

Let f � �f�1, f0, . . . , fd�1� denote the f -vector of a �d�1�-dimensional combinatorial

manifold M . Then the following Dehn-Sommerville equations hold:
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d�1

Q
i�0

��1�ifi � χ�M�,
d�1

Q
i�2j�1

� i � 1

2j � 1
�fi � 0 for 1 B j B

d � 1

2
, if d is odd,

d�1

Q
i�2j

�i � 1

2j
�fi � 0 for 1 B j B

d � 2

2
, if d is even.

(1.2)

Note that the first equation of the Dehn-Sommerville equations is just the

Euler-Poincaré formula of Theorem 1.23 on page 15.

In terms of the h-vector h � �h0, . . . , hd� defined by

hj ��
j�1

Q
i��1

��1�j�i�1�d � i � 1

j � i � 1
�fi

the Dehn-Sommerville equations more simply read as

hj � hd�j �

¢̈̈̈
¦̈̈̈
¤

��1�d�j�dj��χ�M� � 2� for d � 2k � 1 and 0 B j B k

0 for d � 2k and 0 B j B k � 1
.

The Dehn-Sommerville equations can be proved in different ways – the probably

most elegant one is due to Peter McMullen [95] using shelling arguments, while

there exists also a more direct proof due to Branko Grünbaum [56, Sect. 9.2] by

double-counting incidences. The latter proof uses the relation

2fd�1�M� � �d � 1�fd�M�
that can be obtained readily for any combinatorial d-manifold M as it fulfills the

weak pseudomanifold property, i.e. that any �d�1�-face of M is contained in exactly

two facets of M .

1.4 Upper and lower bounds

Some of the most fundamental and, as it turned out, hard questions in polytope

theory and the theory of combinatorial manifolds were questions concerning upper
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and lower bounds on the f -vector of a (simplicial) polytope or a triangulation with

respect to the number of vertices.

The following theorem was known as the “Upper bound conjecture” (UBC) for

a long time until this “rather frustrating” upper bound problem [56, Sec. 10.1] was

solved by McMullen [95] in 1970. It was later extended by Richard Stanley [129]

to the more general case of arbitrary simplicial spheres in 1975. In 1998, Isabella

Novik [106] showed that the UBC holds for all odd-dimensional simplicial manifolds

as well as a few classes of even-dimensional manifolds (namely those with Euler

characteristic 2 as well as those with vanishing middle homology). In 2002, Patricia

Hersh and Novik [61] furthermore showed that the UBC holds for some classes of

odd-dimensional pseudomanifolds with isolated singularities. The classical version

reads as follows.

Theorem 1.35 (McMullen’s Upper Bound Theorem (UBT))

Let P be a d-polytope with n � f0�P � vertices. Then for every k it has at most as

many k-faces as the corresponding cyclic polytope Cd�n�:

fk�1�P � B fk�1�Cd�n��.
Here, equality for any k with 
d2� B k B d implies that P is neighborly and

simplicial.

The cyclic polytope Cn�d� is the simplicial neighborly d-polytope defined as the

convex hull of n subsequent points on the momentum curve t( �t, td, . . . , td� ` Ed.

The face structure of Cd�n� is determined by Gale’s evenness condition [56, Sect. 4.7]

and independent of the choice of points on the momentum curve.

Finding a lower bound of the f -vector of a simplicial d-polytope (and in greater

generality, a triangulation of the d-sphere) with respect to the number of vertices

turned out to be equally challenging. A lower bound theorem for simplicial polytopes,

“one of the more challenging open problems” in polytope theory [56, Sect. 10.2], was

conjectured and after some invalid “proofs” (for d � 4 among others by M. Brückner,

M. Fieldhouse and Grünbaum) finally proved by David Barnette [18, 16], compare

[137] for a proof in the cases d � 4 and d � 5. Barnette [16] also showed that in
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order to prove the theorem, it suffices to show the inequality for f1�P �. See [23] for

a proof based on a shelling argument.

Theorem 1.36 (Barnette’s LBT for simplicial polytopes [16])

Let P be a simplicial d-polytope with f -vector f � f�P �. Then the following hold:

fj C �d
j
�f0 � �d � 1

j � 1
�j for all 1 B j B d � 2 (1.3)

fd�1 C �d � 1�f0 � �d � 1��d � 2�. (1.4)

Here equality is attained for any j if and only if P is a stacked polytope.

See Chapter 3 on page 53 for a definition of stacked polytopes. The discussion of

the cases of equality was done by Barnette for j � d � 1 and by Louis Billera and

C.W. Lee [21] for arbitrary values of j. The proof was later extended by Barnette

[17] himself, David Walkup [137] (d � 4) and by Gil Kalai [68] (all d) to general

triangulated �d � 1�-manifolds, where Kalai’s version was the first to include a

discussion of the case of equality for all d and j.

In succession to McMullen’s “g-conjecture” [96], a combinatorial characterization

of all possible f -vectors of simplicial polytopes that subsumes the lower and the

upper bound theorem and that was finally proved by Billera and Lee [21] and

Stanley [130, 132] in 1979. McMullen and Walkup [98] conjectured a generalized

lower bound theorem for simplicial polytopes that was later proved by Stanley

[130, 131].

Theorem 1.37 (Generalized LBT, [130, 131])

Let P be a simplicial d-polytope with f-vector f � f�P �. Then for 0 B j B d�1
2 the

following inequality holds:

j

Q
i��1

��1�j�i�d � i
j � i

�fi C 0, (1.5)

or, equivalently in terms of the h-vector h � h�P � of P :

hj�1 � hj C 0.
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Note that for j � 0, inequality (1.5) on the previous page is just the trivial

inequality

f0 C d � 1

and for j � 1 it is equivalent to Barnette’s Lower Bound Theorem, hence the name

Generalized Lower Bound Theorem.

The cases of equality of (1.5) were conjectured by McMullen and Walkup [98]

to be realized by k-stacked polytopes, see Section 3.4 on page 67. This has been

proved in special cases, but the general case is still an open problem as of today.

In the centrally symmetric case, Eric Sparla [125, 124] proved some upper and

lower bound theorems, see also Chapter 4 on page 75.

Another interesting type of inequality, the so called Heawood type inequalities,

are discussed in Section 1.6 on page 26 as they are closely related to the notion of

tightness of a triangulation.

1.5 Bistellar moves

Bistellar moves (or flips) as introduced by Udo Pachner [111] (thus sometimes also

referred to as Pachner moves) have proven to be a valuable tool in combinatorial

topology.

In order to define bistellar moves we make use of the so called join operations

for (abstract) simplicial complexes. The join of two simplicial complexes K1 and

K2, denoted by K1 �K2 is defined as follows.

K1 �K2 �� �σ1 8 σ2 � σ1 >K1, σ2 >K2� .
For example we obtain the d-simplex ∆d by forming the join of ∆d�1 with a new

vertex not contained in ∆d�1. Let us now come to the definition of bistellar moves.

Definition 1.38 (bistellar moves) Let M be a triangulated d-manifold and let

A be a �d� i�-face of M , 0 B i B d, such that there exists an i-simplex B that is not
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a face of M with lkM�A� � ∂B. Then a bistellar i-move ΦA on M is defined by

ΦA�M� �� �M��A � ∂B�� 8 �∂A �B�,
where � denotes the join operation for simplicial complexes. Bistellar i-moves with

i A 
d2� are also-called reverse �d � i�-moves.

Note that a bistellar 0-move is nothing else than a stellar subdivision of a facet

and that an i-move and the corresponding reverse i-move cancel out each other.

Bistellar moves can be used to define an equivalence relation on the set of all

pure simplicial complexes.

Definition 1.39 (bistellar equivalence) We call two pure simplicial complexes

bistellarly equivalent, if there exists a finite sequence of bistellar moves transforming

one complex into the other.

As it turns out, this indeed is an equivalence relation, also from the topological

point of view.

Theorem 1.40 (Pachner [111])

Two combinatorial manifolds are PL homeomorphic if and only if they are bistellarly

equivalent.

Thus, bistellar flips leave the PL homeomorphism type of a given triangulated

manifold M invariant. Each flip can be thought of as an edge in the bistellar

flip graph, where the vertices of that graph are represented by combinatorial

triangulations of SM S.
Using this process in a simulated annealing type strategy as was done by Frank H.

Lutz and Anders Björner in [22] one can try to obtain small and in some cases even

vertex minimal triangulations of some given manifold, compare [91, 90, 92, 93, 89].

For a visualization of bistellar moves in the 3-dimensional case see Figure 1.11

on the next page.
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Figure 1.11: Bistellar moves in dimension d � 3, left: bistellar 0-move and its inverse
3-move, right: 1-move and its inverse 2-move.

1.6 Tightness, tautness and Heawood inequalities

Tightness is a notion developed in the field of differential geometry as the equality

of the (normalized) total absolute curvature of a submanifold with the lower bound

sum of the Betti numbers [87, 14]. It was first studied by Alexandrov [2], Milnor

[101], Chern and Lashof [32] and Kuiper [86] and later extended to the polyhedral

case by Banchoff [12], Kuiper [87] and Kühnel [78].

From a geometrical point of view, tightness can be understood as a generalization

of the concept of convexity that applies to objects other than topological balls and

their boundary manifolds since it roughly means that an embedding of a submanifold

is “as convex as possible” according to its topology. The usual definition is the

following.

Definition 1.41 (tightness [87, 78]) Let F be a field. An embedding M � Ek of

a triangulated compact manifold is called k-tight with respect to F, if for any open

or closed half-space h ` Ek the induced homomorphism

Hi�M 9 h; F�Ð�Hi�M ; F�
is injective for all i B k. M is called F-tight if it is k-tight with respect to F for all k.

The standard choice for the field of coefficients is F2 and an F2-tight embedding is

called tight. M is called substantial in Ed if it is not contained in any hyperplane

of Ed.

With regard to PL embeddings of PL manifolds, the tightness of a combinatorial

manifold can also be defined via a purely combinatorial condition as follows.
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Definition 1.42 (tight triangulation) Let F be a field. A combinatorial ma-

nifold K on n vertices is called (k-)tight w.r.t. F if its canonical embedding

K ` ∆n�1 ` En�1 is (k-)tight w.r.t. F, where ∆n�1 denotes the �n � 1�-dimensional

simplex.

The property of being a tight triangulation is closely related to the so-called

Heawood inequality (and its generalizations).

In dimension d � 2 the following are equivalent for a triangulated surface S

on n vertices: (i) S has a complete edge graph Kn, (ii) S appears as a so-called

regular case in Heawood’s Map Color Theorem 1.43 on the following page (see

[59, 114], [78, Chap. 2C]) and (iii) the induced piecewise linear embedding of S into

Euclidean �n � 1�-space has the two-piece property [13], and it is tight [73], [78,

Chap. 2D]. Before going to higher dimensions let us discuss the well-understood

two-dimensional case a little bit more in detail.

The following inequalities (ii), (iii) and (iv) of Theorem 1.43 are known as

Heawood’s inequality as these were first conjectured by P.J. Heawood [59] in 1890.

The problem was solved between 1950 and 1970 by Gerhard Ringel and Ted Youngs

[114] for the cases with g A 0. For g � 0 the still disputed proof of the 4-Color-

Problem was accomplished by Appel, Haken and Koch [6, 7] in 1976 with heavily

involved, computer-aided proof techniques.

Theorem 1.43 (Map color theorem, G. Ringel, J.W.T. Youngs [114])

Let S be an abstract surface of genus g on n vertices which is different from the

Klein bottle. The following are equivalent:

(i) There exists an embedding of the complete graph Kn � S.

(ii) χ�S� B n�7 � n�
6

.

(iii) n B
1

2
�7 �

»
49 � 24χ�S��.

(iv) �n � 3

2
� B 3�2 � χ�s�� � 6g.

Moreover, equality in the inequalities implies that the embedding of Kn induces an

abstract triangulation of S and we will refer to the version
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�n � 3

2
� B 3�2 � χ�s�� � 6g (1.6)

as Heawood’s inequality from now on.

People thus also talk about the uniquely determined genus of the complete graph

Kn which is (in the orientable regular cases n � 0,3,4,7 �12�, n C 4)

g �
1

6
�n � 3

2
�.

So far so good — but how are the Heawood inequalities related to tight triangu-

lations of surfaces? The following theorem establishes this relation.

Theorem 1.44 (Kühnel, [73])

Let M be an abstract surface and let n C 6 be a given number. Then the following

are equivalent:

(i) There exists a tight and substantial polyhedral embedding M � En�1.

(ii) There exists an embedding Kn � M .

This establishes the correspondence of a tight triangulation of a surface with

the case of equality in the Heawood inequality, a so called regular case of (1.6),

compare [114].

Ringel and Jungerman and Ringel also proved the reversed inequality of (1.6),

asking for vertex minimal triangulations of surfaces.

Theorem 1.45 (minimal triangulations of surfaces, [113, 67])

Let M be an abstract surface distinct from the Klein bottle, the orientable surface

of genus 2 and from the surface with χ � �1. Then the following are equivalent:

(i) There exists a triangulation of M with n vertices.

(ii) �n � 3

2
� C 3�2 � χ�M��.

Equality in (ii) above holds if and only if the triangulation is tight.
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They constructed for each case a triangulation of M with the smallest number n

of vertices satisfying inequality (ii) on the facing page. Note that the machinery

used in the proof is rather involved. In the three exceptional cases the left hand

side of the inequality (ii) above has to be replaced by �n�4
2
�, compare [64].

After this excursion into the two-dimensional case let us now come to the case of

higher dimensions. Here it was Kühnel who investigated the tightness of combina-

torial triangulations of manifolds also in higher dimensions and codimensions, see

[77], [78, Chap. 4]. It turned out that the tightness of a combinatorial triangulation

is closely related to the concept of Hamiltonicity of polyhedral complexes (see

[76, 78]).

Definition 1.46 (Hamiltonian subcomplex) A subcomplex A of a polyhedral

complex K is called k-Hamiltonian3 if A contains the full k-dimensional skeleton

of K.

Note that with the simplex as ambient polytope, a k-Hamiltonian subcomplex is

a �k � 1�-neighborly complex, see Definition 1.6 on page 4.

This generalization of the notion of a Hamiltonian circuit in a graph seems

to be due to Christoph Schulz [117, 118]. A Hamiltonian circuit then becomes

a special case of a 0-Hamiltonian subcomplex of a 1-dimensional graph or of a

higher-dimensional complex [48]. See Figure 2.3 on page 46 for the topologically

unique Hamiltonian cycles in the tetrahedron and the cube.

If K is the boundary complex of a convex polytope, then this concept becomes

particularly interesting and quite geometrical [78, Ch.3]. Amos Altshuler [3] inves-

tigated 1-Hamiltonian closed surfaces in special polytopes.

A triangulated 2k-manifold that is a k-Hamiltonian subcomplex of the boundary

complex of some higher dimensional simplex is a tight triangulation as Kühnel [78,

Chap. 4] showed.

Theorem 1.47 (Kühnel [78])

Assume that M ` P ` Ed is a subcomplex of a convex d-polytope P such that M

contains all vertices of P and assume that the underlying set of M is homeomorphic

to a �k � 1�-connected 2k-manifold. Then the following are equivalent:

3Not to be confused with the notion of a k-Hamiltonian graph [31].

29



Chapter 1. Basics

(i) M is tight in Ed.

(ii) M is k-Hamiltonian in P .

Remember that in the case of the simplex as ambient polytope, k-Hamiltoni-

an subcomplexes are �k � 1�-neighborly triangulations. Such �k � 1�-neighborly

triangulations of 2k-manifolds are also referred to as super-neighborly triangulations

– in analogy with neighborly polytopes the boundary complex of a �2k�1�-polytope

can be at most k-neighborly unless it is a simplex. Notice here that combinatorial

2k-manifolds can go beyond k-neighborliness, depending on their topology.

The notion of a missing face plays an important role for the tightness of a

triangulation. For any tight subcomplex K of the boundary complex of a convex

polytope P the following is a direct consequence of Definition 1.41 on page 26,

compare [78, 1.4].

Consequence 1.48

A facet of the polytope P is either contained in K or its intersection with K

represents a subset of K (often called a topset) which injects into K at the homology

level and which is again tightly embedded into the ambient space. In particular,

any missing �k � 1�-simplex in a k-Hamiltonian subcomplex K of a simplicial

polytope represents a non-vanishing element of the k-th homology by the standard

triangulation of the k-sphere.

In even dimensions, generalized Heawood inequalities can be obtained between

the dimension of the polytope and the Euler characteristic of the manifold as in this

case the Euler characteristic χ�M� � 2���1�kβk�M� contains essential information

about the topology of M . Here βk denotes the k-th Betti number.

Theorem 1.49 (Kühnel, [77])

Let P be a simplicial d-polytope and let M ` P ` Ed be a �k � 1�-connected

combinatorial 2k-manifold that is a tight subcomplex of P and that contains all

vertices of P . Then the following holds:

�d � k � 1

k � 1
� B ��1�k�2k � 1

k � 2
��χ�M� � 2� � �2k � 1

k � 1
�βk�M�. (1.7)
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Moreover, for d C 2k�2 equality holds if and only if P is a simplex (and, consequently,

if M is a tight triangulation).

This can be called “generalized Heawood inequality” as when P is a simplex and

k � 1, inequality (1.7) on the facing page reads as

�d � 2

2
� B 3�2 � χ�M��,

which is the Heawood inequality with n � d � 1, see Theorem 1.43 on page 28.

As in the two-dimensional case, a reverse inequality to (1.7) holds as follows.

Theorem 1.50 (Kühnel, [78])

Assume that M is a �k � 2�-tight combinatorial triangulation of a �k � 2�-connected

2k-manifold with n vertices. Then the following holds:

�n � k � 2

k � 1
� C ��1�k�2k � 1

k � 1
��χ�M� � 2�, (1.8)

with equality if and only if M is �k � 1�-connected and the triangulation is tight.

Furthermore, Kühnel [77, 78] conjectured Theorem 1.50 to hold in greater gener-

ality for any n-vertex triangulation of a 2k-manifold, what was later almost proved

by Novik [106] and finally proved by Novik and Swartz [108].

Theorem 1.51 (Kühnel’s conjecture, [77, 78, 106, 108])

Let M be a combinatorial n vertex triangulation of a 2k-manifold. Then the following

inequality holds:

�n � k � 2

k � 1
� C ��1�k�2k � 1

k � 1
��χ�M� � 2�.

Equality holds if and only if M is a tight triangulation.

Equality holds precisely in the case of super-neighborly triangulations. These are

k-Hamiltonian in the �n � 1�-dimensional simplex. In the case of 4-manifolds (i.e.,

k � 2) an elementary proof was already contained in [78, 4B].

Except for the trivial case of the boundary of a simplex itself there are only a

finite number of known examples of super-neighborly triangulations, reviewed in
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Chapter 1. Basics

[84]. They are necessarily tight (cf. [78, Ch.4]). The most significant ones are the

unique 9-vertex triangulation of the complex projective plane [81], [82], a 16-vertex

triangulation of a K3 surface [29] and several 15-vertex triangulations of an 8-

manifold “like the quaternionic projective plane” [28]. There is also an asymmetric

13-vertex triangulation of S3 � S3, see [84], but most of the examples are highly

symmetric.

Note that for odd d � 2k � 1, inequality (1.7) on page 30 holds trivially, but no

conclusion about the case of equality is possible as the boundary of any �2k � 1�-
polytope is an example. For fixed d, the right hand side of (1.7) gives the minimal

“genus” (as the minimal number of copies of Sk � Sk needed) of a 2k-manifold

admitting an embedding of the complete k-skeleton of the d-simplex. As in the

2-dimensional case, the k-Hamiltonian triangulations of 2k-manifolds here appear

as regular cases of the generalized Heawood inequalities.

With the n-cube as ambient polytope, there are famous examples of quadran-

gulations of surfaces originally due to Harold Coxeter which can be regarded as

1-Hamiltonian subcomplexes of higher-dimensional cubes [85], [78, 2.12]. Accord-

ingly one talks about the genus of the d-cube (or rather its edge graph) which is

(in the orientable case)

g � 2d�3�d � 4� � 1,

see [112], [19]. However, in general the genus of a 1-Hamiltonian surface in a

convex d-polytope is not uniquely determined, as pointed out in [117, 118]. This

uniqueness seems to hold especially for regular polytopes where the regularity

allows a computation of the genus by a simple counting argument.

In the cubical case there are higher-dimensional generalizations by Danzer’s

construction of a power complex 2K for a given simplicial complex K. In particular

there are many examples of k-Hamiltonian 2k-manifolds as subcomplexes of higher-

dimensional cubes, see [85]. For obtaining them one just has to start with a

neighborly simplicial �2k�1�-sphere K. A large number of the associated complexes

2K are topologically connected sums of copies of Sk � Sk. This seems to be the

standard case.
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1.6. Tightness, tautness and Heawood inequalities

Centrally-symmetric analogues of tight triangulations of surfaces can be regarded

as 1-Hamiltonian subcomplexes of cross polytopes or other centrally symmetric

polytopes, see [79]. Similarly, we have the genus of the d-dimensional cross polytope

[66] which is (in the orientable regular cases d � 0,1 �3�, d C 3)

g �
1

3
�d � 1��d � 3�.

There also exist generalized Heawood inequalities for k-Hamiltonian subcomplexes

of cross polytopes that were first conjectured by Sparla [126] and almost completely

proved by Novik in [107]. The k-Hamiltonian 2k-submanifolds appearing as regular

cases in these inequalities admit a tight embedding into a higher dimensional cross

polytope and are also referred to as nearly �k � 1�-neighborly as they contain all

i-simplices, i B k, not containing one of the diagonals of the cross polytope (i.e. they

are “neighborly except for the diagonals of the cross polytope”), see also Chapter 4

on page 75.

For d � 2, a regular case of Heawood’s inequality corresponds to a triangulation of

an abstract surface (cf. [114]). Ringel [113] and Jungerman and Ringel [67] showed

that all of the infinitely many regular cases of Heawood’s inequality distinct from

the Klein bottle do occur. As any such case yields a tight triangulation (see [73]),

there are infinitely many tight triangulations of surfaces.

In contrast, in dimensions d C 3 there only exist a finite number of known

examples of tight triangulations (see [84] for a census), apart from the trivial case of

the boundary of a simplex and an infinite series of triangulations of sphere bundles

over the circle due to Kühnel [78, 5B], [74].

Apart from the homological definition given in Definitions 1.41 on page 26

and 1.42 on page 27, tightness can also be defined in the language of Morse theory

in a natural way: On one hand, the total absolute curvature of a smooth immersion

X equals the average number of critical points of any non-degenerate height function

on X in a suitable normalization. On the other hand, the Morse inequality shows

that the normalized total absolute curvature of a compact smooth manifold M is

bounded below by the rank of the total homology H��M� with respect to any field
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of coefficients and tightness is equivalent to the case of equality in this bound, see

[84]. This will be investigated upon in the following section.

For the similar notion of tautness one has to replace half-spaces by balls (or

ball complements) and height functions by distance functions in the definitions of

tightness, see [30]. This applies only to smooth embeddings. In the polyhedral case

it has to be modified as follows.

Definition 1.52 (tautness, suggested in [15]) A PL-embedding M � EN of a

compact manifold with convex faces is called PL-taut, if for any open ball (or ball

complement) B ` EN the induced homomorphism

H��M 9 span�B0��Ð�H��M�
is injective where B0 denotes the set of vertices in M 9B, and span�B0� refers to

the subcomplex in M spanned by those vertices.

Obviously, any PL-taut embedding is also tight (consider very large balls), and a

tight PL-embedding is PL-taut provided that it is PL-spherical in the sense that

all vertices are contained in a certain Euclidean sphere. It follows that any tight

and PL-spherical embedding is also PL-taut [15].

Corollary 1.53

Any tight subcomplex of a higher-dimensional regular simplex, cube or cross polytope

is PL-taut.

In particular this implies that the class of PL-taut submanifolds is much richer

than the class of smooth taut submanifolds.

1.7 Polyhedral Morse theory

As an extension to classical Morse theory (see [99] for an introduction to the field),

Kühnel [75, 78] developed what one might refer to as a polyhedral Morse theory.

Note that in this theory many, but not all concepts carry over from the smooth to

the polyhedral case, see the survey articles [87] and [14] for a comparison of the

two cases.
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1.7. Polyhedral Morse theory

In the polyhedral case regular simplex-wise linear functions on combinatorial

manifolds, a discrete analog to the Morse functions in classical Morse theory, are

defined as follows.

Definition 1.54 (rsl functions, [75, 78]) Let M be a combinatorial manifold

of dimension d. A function f �M � R is called regular simplex-wise linear (or

rsl), if f�v� x f�v�� for any two vertices v x v� of M and f is linear when restricted

to any simplex of M .

Notice that an rsl function is uniquely determined by its value on the set of

vertices and that only vertices can be critical points of f in the sense of Morse

theory. With this definition at hand one can define critical points and levelsets of

these Morse functions as in the classical Morse theory.

Definition 1.55 (critical vertices, [75, 78]) Let F be a field, let M be a com-

binatorial d-manifold and let f �M � R be an rsl-function on M . A vertex v >M

is called critical of index k and multiplicity m with respect to f , if

dimFHk�Mv,Mv��v�; F� �m A 0,

where Mv �� �x >M � f�x� B f�v�� and H� denotes an appropriate homology theory

with coefficients in F. The number of critical points of f of index i (with multiplicity)

are

µi�f ; F� �� Q
v>V �M�

dimFHi�Kv,Kv��v�; F�.

In the following chapters we will be particularly interested in special kinds of

Morse functions, so-called polar Morse functions. This term was coined by Morse,

see [104].

Definition 1.56 (polar Morse function) Let f be a Morse function that only

has one critical point of index 0 and of index d for a given (necessarily connected)

d-manifold. Then f is called polar Morse function.
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P

Figure 1.12: Schlegel diagram of the 2-cube (right) obtained by projecting all
vertices into one facet of the cube.

Note that for a 2-neighborly combinatorial manifold clearly all rsl functions are

polar functions. As in the classical theory, Morse inequalities hold as follows.

Theorem 1.57 (Morse relations, [75, 78])

Let F be a field, M a combinatorial manifold of dimension d and f � M � R

an rsl-function on M . Then the following holds, where βi�M ; F� �� dimFHi�M ; F�
denotes the i-th Betti number:

(i) µi�f ; F� C βi�M ; F� for all i,

(ii) Pdi�0��1�iµi�f ; F� � χ�M� � Pdi�0��1�iβi�M ; F�,

(iii) M is (k-)tight with respect to F if and only if µi�f ; F� � βi�M ; F� for every

rsl function f and for all 0 B i B d (for all 0 B i B k).

Functions satisfying equality in (i) for all i B k are called k-tight functions w.r.t. F.

A function f that satisfies equality in (i) for all i is usually referred to as F-perfect

or F-tight function, cf. [25]. The usual choice of field is F � F2.

Note that a submanifold M of Ed is tight in the sense of Definition 1.41 on

page 26 if and only if every Morse function on M is a tight function, see [75, 78].

1.8 Schlegel diagrams

Schlegel diagrams provide a means to visualize a d-polytope in �d � 1�-dimensional

Euclidean space. This tool is especially valuable for the visualization of 4-polytopes,

as we will see in Chapter 4 on page 75.
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1.8. Schlegel diagrams

Figure 1.13: Schlegel diagrams of the 4-simplex (left) and the 4-cube (right).

A Schlegel diagram of a d-polytope P based at the facet F of P is obtained by a

perspective projection of all proper faces of P other than F into F . The projection

center x is chosen to lie above the middle of F , i.e. in a plane with ε-distance of

and parallel to the supporting hyperplane of P that intersects ‘P in F .

This induces a polytopal subdivision of F that can be shown to be combinatorially

equivalent to the complex C�∂P ���F� of all proper faces of P except F .

See Figure 1.12 on the preceding page for a Schlegel diagram of the 3-cube,

Figure 1.14 on the following page for examples of Schlegel diagrams of the Platonic

solids and Figure 1.13 for examples of Schlegel diagrams of the 4-simplex and the

4-cube.

37



C
h
a
p
t
e
r

1
.

B
a
sic

s

Figure 1.14: Schlegel diagrams of the five Platonic solids as shown in Figure 1.3 on page 4.
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Chapter 2

Hamiltonian surfaces in the 24-cell, the

120-cell and the 600-cell

This chapter investigates the question of existence or non-existence of Hamiltonian

subcomplexes of certain regular polytopes1.

It is well-known that there exist Hamiltonian cycles in the 1-skeleton of each of the

Platonic solids (see Table 2.1 on page 41 and Figures 2.3 on page 46, 2.7 on page 52).

The numbers of distinct Hamiltonian cycles (modulo symmetries of the solid itself)

are 1,1,2,1,17 for the cases of the tetrahedron, cube, octahedron, dodecahedron,

icosahedron, respectively – while the first four cases are easily checked by hand,

the more complicated case of the icosahedron was solved by Heinz Heesch in the

1970s, see Figure 2.7 on page 52 and [60, pp. 277 ff.].

Pushing the question one dimension further, a natural question is to ask whether

there exist 1-Hamiltonian 2-submanifolds (i.e. Hamiltonian surfaces) in the skeletons

of higher dimensional polytopes (cf. [120]). Note here that a 1-Hamiltonian surface

in the boundary complex of a Platonic solid must coincide with the boundary itself

and is, therefore, not really interesting. Thus, the question becomes interesting only

for polytopes of dimension d C 4.

For d C 5, the only regular polytopes are the d-simplex which is self-dual, the

d-cube and its dual, the d-cross polytope. Since the case of the cube and the simplex

were previously studied (see [78, 85, 19]), the focus of attention here will be on the

1The results of this chapter are in most parts contained in [40], a joint work with Wolfgang
Kühnel.
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case d � 4 (in this chapter) and the case of higher-dimensional cross-polytopes (in

Chapter 4 on page 75).

For d � 4, Hamiltonian cycles in the regular 4-polytopes are known to exist.

However, it seems that so far no decision about the existence or non-existence

of 1-Hamiltonian surfaces in the 2-skeleton of any of the three sporadic regular

4-polytopes could be made, compare [120]. This question will be investigated upon

in the following.

In this chapter, first the regular convex 3- and 4-polytopes are introduced, followed

by an investigation of the question whether there exist 1-Hamiltonian surfaces in

the boundary complexes of the four sporadic regular convex 4-polytopes, akin to

the equivalent question for 3-polytopes. The answer to this question surprisingly

turned out to be negative.

2.1 The five regular and convex 3-polytopes

The five regular convex 3-polytopes as shown in Figure 1.3 on page 4 and Table 2.1

on the facing page – also known as Platonic solids – have been known since antiquity.

They were studied extensively by the ancient Greeks, and while some sources credit

Pythagoras with their discovery, others account the discovery of the octahedron

and icosahedron to Theaetetus, a contemporary of Plato that probably gave the

first mathematical proof of their existence along with a proof that there exist no

other regular convex 3-polytopes.

Euclid also gave a mathematically complete description of the Platonic solids

in his Elements [47]. He used a geometrical proof that there only exist five such

polytopes, that is sketched in the following lines:

(i) Each vertex of the polytope is contained in at least three facets and

(ii) at each vertex, the sum of the angles among adjacent facets must be less

than 2π.

(iii) Since the geometric situation is the same at each vertex and the minimal

vertex number of a facet is 3, each vertex of each facet must contribute an angle

less than 2π
3 .
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Table 2.1: The five Platonic solids and their Schläfli symbols.

name illustration Schläfli symbol

tetrahedron �3,3�
octahedron �3,4�

cube �4,3�
dodecahedron �5,3�
icosahedron �3,5�

(iv) Since regular polygons with six or more sides only admit angles of at least

2π
3 at the vertices, the possible choices for the facets are either triangles, squares or

pentagons.

(v) This leaves the following possibilities. For triangular facets: since the angle

at each vertex of a regular triangle is π
3 , this leaves the tetrahedron (3 triangles

meeting in a vertex), the octahedron (4 triangles meeting in a vertex) and the

icosahedron (5 triangles meeting in a vertex) as possibilities. For square facets:

since the angle at each vertex is π
2 , this leaves the cube with three squares meeting

in a vertex as the only possibility. For pentagonal facets: as the angle at each vertex

is 3π
5 , again there only exists one solution with three facets meeting at each vertex,

the dodecahedron.

Each facet of a Platonic solid is a regular p-gon and the five polytopes can be

told apart by p and the number of facets q meeting in a vertex. Consequently, the

Platonic solids can be distinguished by their so-called Schläfli symbol �p, q�. See

Table 2.1 for a list of the Platonic solids and their Schläfli symbols. The Schläfli

symbol reverses its order under dualization: if a regular convex 3-polytope has the

Schläfli symbol �p, q�, then its dual polytope has the Schläfli symbol �q, p�. This

notion can also be generalized to higher dimensions, see Section 2.2 on the following

page.
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On the other hand a second, combinatorial proof of the fact that there only

exist five Platonic solids can be obtained as explained in the following. In fact, the

Schläfli symbol �p, q� determines all combinatorial information of a regular convex

3-polytope P , as by double counting one gets

pf2�P � � 2f1�P � � qf0�P �, (2.1)

and together with the Euler relation

f0�P � � f1�P � � f2�P � � 2 (2.2)

the equations yields

f0�P � � 4p

4 � �p � 2��q � 2� ,
f1�P � � 2pq

4 � �p � 2��q � 2� ,
f2�P � � 4q

4 � �p � 2��q � 2� .
Inserting (2.1) into the Euler relation (2.2) yields

2f1�P �
q

� f1�P � � 2f1�P �
p

� 2.

Consequently,

1

q
�

1

p
�

1

2
�

1

f1�P � , and since f1�P � A 0 �
1

q
�

1

p
A

1

2
.

Since p C 3 and q C 3, this only leaves the five possibilities for pairs �p, q� listed in

Table 2.1 on the previous page.

2.2 The six regular and convex 4-polytopes

As in the three-dimensional case, there exist only a finite number of types —namely

six different— of regular convex 4-polytopes, sometimes also referred to as regular
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Table 2.2: The six regular convex 4-polytopes.

Name Schläfli symbol facets vert. figures f -vector

4-simplex �3,3,3� �3,3� �3,3� �5,10,10,5�
4-cube �4,3,3� �4,3� �3,3� �16,32,24,8�

4-cross polytope �3,3,4� �3,3� �3,4� �8,24,32,16�
24-cell �3,4,3� �3,4� �4,3� �24,96,96,24�
120-cell �5,3,3� �5,3� �3,3� �600,1200,720,120�
600-cell �3,3,5� �3,3� �3,5� �120,720,1200,600�

convex polychora (Greek choros=room): the 4-simplex, the 4-cube and its dual the

4-octahedron (or 4-cross polytope), the 24-cell (which is self dual) and the 120-cell

and its dual, the 600-cell. Table 2.2 lists some properties of these six regular convex

4-polytopes.

Figure 2.1 on the next page shows a visualization of the six polytopes via their

Schlegel diagrams (cf. Section 1.8 on page 36), Figure 2.2 on page 45 a second

visualization of the polytopes via their 1-skeletons.

2.3 Hamiltonian surfaces in the 24-cell

The boundary complex of the 24-cell �3,4,3� consists of 24 vertices, 96 edges,

96 triangles and 24 octahedra. Any 1-Hamiltonian surface (or pinched surface)

must have 24 vertices, 96 edges and, consequently, 64 triangles, hence it has Euler

characteristic χ � �8.

Every edge in the polytope is in three triangles. Hence we must omit exactly

one of them in each case for getting a surface where every edge is in two triangles.

Since the vertex figure in the polytope is a cube, each vertex figure in the surface

is a Hamiltonian circuit of length 8 in the edge graph of a cube.

It is well known that this circuit is uniquely determined up to symmetries of the

cube, see Figure 2.3 on page 46 (left). Starting with one such vertex figure, there are

four missing edges in the cube which, therefore, must be in the uniquely determined
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Figure 2.1: Schlegel diagrams of the six regular convex 4-polytopes, from left to
right, top to bottom: the 4-simplex, the 4-cube, the 4-octahedron or
4-cross polytope, the 24-cell, the 120-cell and the 600-cell. Visualizations
created using the software polymake [52].
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2.3. Hamiltonian surfaces in the 24-cell

Figure 2.2: Visualizations of the six regular convex 4-polytopes that were produced
using the software jenn [109]: The 1-skeletons of the polytopes are first
embedded into a 3-sphere and then stereographically projected into
Euclidean 3-space. From left to right, top to bottom: the 4-simplex, the
4-cube, the 4-octahedron or 4-cross polytope, the 24-cell, the 120-cell
and the 600-cell.
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Figure 2.3: A Hamiltonian cycle in the edge graph of the cube (left) and in the
edge graph of the tetrahedron (right).

other triangles of the 24-cell. In this way, one can inductively construct an example

or, alternatively, verify the non-existence. If singular vertices are allowed, then the

only possibility is a link which consists of two circuits of length four each. This

leads to the following theorem.

Theorem 2.1

There is no 1-Hamiltonian surface in the 2-skeleton of the 24-cell. However, there

are six combinatorial types of strongly connected 1-Hamiltonian pinched surfaces

with a number of pinch points ranging between 4 and 10 and with the genus ranging

between g � 3 and g � 0. The case of the highest genus is a surface of genus three

with four pinch points. The link of each of the pinch points in any of these types is

the union of two circuits of length four.

The six types and their automorphism groups are listed in Tables 2.3 on the next

page and 2.4 on the facing page where the labeling of the vertices of the 24-cell

coincides with the standard one in the polymake system [52]. Visualizations of the

six types can be found in [40].

Type 1 is a pinched sphere which is based on a subdivision of the boundary of the

rhombidodecahedron, see Figure 2.4 on page 48 (left). Type 4 is just a �4 � 4�-grid

square torus where each square is subdivided by an extra vertex, see Figure 2.4

on page 48 (right). These 16 extra vertices are identified in pairs, leading to the 8

pinch points.

Because �8 equals the Euler characteristic of the original (connected) surface

minus the number of pinch points it is clear that we can have at most 10 pinch

points unless the surface splits into several components. We present here in more

detail Type 6 as a surface of genus three with four pinch points, see Figure 3
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Figure 2.4: Type 1 (left) and Type 4 (right) of Hamiltonian pinched surfaces in the
24-cell.

(produced with JavaView [71]). Its combinatorial type is given by the following list

of 64 triangles:

`123e, `124e, `136e, `149e, `157e, `159e, `1611e, `1711e,
`238e, `248e, `2510e, `2512e, `21013e, `21213e, `3614e, `3710e,
`3714e, `3815e, `31015e, `468e, `4616e, `4912e, `41217e, `41617e,
`5710e, `5918e, `51219e, `51819e, `6820e, `61114e, `61620e, `71118e,
`71421e, `71821e, `81315e, `81317e, `81720e, `91116e, `91118e, `91222e,
`91622e, `101319e,`101521e,`101921e,`111423e,`111623e,`121317e,`121922e,
`131524e,`131924e,`141520e,`141521e,`142023e,`152024e,`161722e,`162023e,
`172024e,`172224e,`181922e,`182123e,`182223e,`192124e,`212324e,`222324e.

The pinch points are the vertices 2, 6, 19, 23 with the following links:

2 � `1 3 8 4e `5 10 13 12e
6 � `1 3 14 11e `4 8 20 16e

19 � `5 12 22 18e `10 13 24 21e
23 � `11 14 20 16e `18 21 24 22e.

The four vertices 7, 9, 15 and 17 are not joined to each other and not to any of

the pinch points either. Therefore the eight vertex stars of 7,9,15,17,2,6,19,23

cover the 64 triangles of the surface entirely and simply, compare Figure 2.5 on the

next page where the combinatorial type is sketched. In this drawing all vertices are
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Figure 2.5: The triangulation of the Hamiltonian pinched surface of genus 3 in the
24-cell.

8-valent except for the four pinch points in the two “ladders” on the right hand

side which have to be identified in pairs.

The combinatorial automorphism group of order 16 is generated by

Z � �1 11��2 23��3 14��4 16��5 18��8 20��10 21��12 22��13 24�,
A � �1 5��3 12��4 10��6 19��7 9��8 13��11 18��14 22��15 17��16 21��20 24�,
B � �1 3��4 8��5 10��9 15��11 14��12 13��16 20��18 21��22 24�.

The elements A and B generate the dihedral group D8 of order 8 whereas Z

commutes with A and B. Therefore the group is isomorphic with D8 �C2.

2.4 Hamiltonian surfaces in the 120-cell and the 600-

cell

The 600-cell has the f -vector �120,720,1200,600� and by duality the 120-cell has

the f -vector �600,1200,720,120�. Any 1-Hamiltonian surface in the 600-cell must

have 120 vertices, 720 edges and, consequently, 480 triangles (namely, two out of

five), so it has Euler characteristic χ � �120 and genus g � 61.
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Chapter 2. Hamiltonian surfaces in the 24-cell, 120-cell, 600-cell

Figure 2.6: Two projections of the Hamiltonian pinched surface of genus 3 in the
24-cell.

We obtain the same genus in the 120-cell by counting 600 vertices, 1200 edges

and 480 pentagons (namely, two out of three).

The same Euler characteristic would hold for a pinched surface if there were any.

We remark that similarly the 4-cube admits a Hamiltonian surface of the same

genus (namely, g � 1) as the 4-dimensional cross polytope.

Theorem 2.2

There is no 1-Hamiltonian surface in the 2-skeleton of the 120-cell. There is

no pinched surface either since the vertex figure of the 120-cell is too small for

containing two disjoint circuits.

The proof is a fairly simple procedure: In each vertex figure of type �3, 3� (i.e. a

tetrahedron) the Hamiltonian surface appears as a Hamiltonian circuit of length 4.

This is unique, up to symmetries of the tetrahedron and of the 120-cell itself, see

Figure 2.3 on page 46 (right).

Note that two consecutive edges determine the circuit completely. So without

loss of generality we can start with such a unique vertex link of the surface. This

means we start with four pentagons covering the star of one vertex. In each of

the four neighboring vertices this determines two consecutive edges of the link
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2.4. Hamiltonian surfaces in the 120-cell and the 600-cell

there. It follows that these circuits are uniquely determined as well and that we

can extend the beginning part of our surface, now covering the stars of five vertices.

Successively this leads to a construction of such a surface. However, after a few

steps it ends at a contradiction. Consequently, such a Hamiltonian surface does not

exist.

Theorem 2.3

There is no 1-Hamiltonian surface in the 2-skeleton of the 600-cell.

This proof is more involved since it uses the classification of all 17 distinct

Hamiltonian circuits in the icosahedron, up to symmetries of it [60, pp. 277 ff.], see

Figure 2.7 on the next page.

If there is such a 1-Hamiltonian surface, then the link of each vertex in it must

be a Hamiltonian cycle in the vertex figure of the 600-cell which is an icosahedron.

We just have to see how these can fit together. Starting with one arbitrary link one

can try to extend the triangulation to the neighbors. For the neighbors there are

forbidden 2-faces which has a consequence for the possible types among the 17 for

them.

After an exhaustive computer search it turned out that there is no way to fit all

vertex links together. Therefore such a surface does not exist.

At this point it must be left open whether there are 1-Hamiltonian pinched

surfaces in the 600-cell. The reason is that there are too many possibilities for a

splitting into two, three or four cycles in the vertex link. For a systematic search

one would have to classify all these possibilities first.

The GAP programs used for the algorithmic proofs of Theorems 2.1, 2.2 and 2.3

and details of the calculations are available from the author’s website [41] or upon

request, see also Appendix D on page 153 for the case of the 24-cell.
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(1)

(4) (5) (6) (8)

(10) (11) (12)(9)

(13) (14) (15) (16) (17)

(7)

(2) (3)

Figure 2.7: The 17 topological types of Hamiltonian cycles in the icosahedron
ordered by their symmetries. The cycle (1) has a cyclic symmetry group
C3 of order 3, (2) and (3) have a symmetry of type C2 �C2, the cycles
(4)-(11) have a C2 symmetry and (12)-(17) are not symmetric.
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Chapter 3

Combinatorial manifolds with stacked

vertex links

In even dimensions, super-neighborliness is known to be a purely combinatorial

condition which implies the tightness of a triangulation. In this chapter1 we present

other sufficient and purely combinatorial conditions which can be applied to the

odd-dimensional case as well. One of the conditions is that all vertex links are

stacked spheres, which implies that the triangulation is in Walkup’s class K�d�.
We show that in any dimension d C 4 tight-neighborly triangulations as defined by

Lutz, Sulanke and Swartz are tight. Furthermore, triangulations with k-stacked

vertex links are discussed.

In the course of proving the Lower Bound Conjecture (LBC) for 3- and 4-

manifolds, D. Walkup [137] defined a class K�d� of “certain especially simple” [137,

p. 1] combinatorial manifolds as the set of all combinatorial d-manifolds that only

have stacked �d � 1�-spheres as vertex links as defined below.

Definition 3.1 (stacked polytope, stacked sphere [137])

(i) A simplex is a stacked polytope and each polytope obtained from a stacked

polytope by adding a pyramid over one of its facets is again stacked.

(ii) A triangulation of the d-sphere Sd is called stacked d-sphere if it is combina-

torially isomorphic to the boundary complex of a stacked �d � 1�-polytope.

1This chapter essentially contains the results of [42].
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Chapter 3. Combinatorial manifolds with stacked vertex links

Thus, a stacked d-sphere can be understood as the combinatorial manifold

obtained from the boundary of the �d�1�-simplex by successive stellar subdivisions

of facets of the boundary complex ∂∆d�1 of the �d� 1�-simplex (i.e. by successively

subdividing facets of a complex Ki, i � 0,1,2, . . . , by inner vertices, where K0 �

∂∆d�1). In the following we will give combinatorial conditions for the tightness of

members of K�d� holding in all dimensions d C 4. The main results of this chapter

are the following.

In Theorem 3.2 on the next page we show that any polar Morse function subject

to a condition on the number of critical points of even and odd indices is a perfect

function. This can be understood as a combinatorial analogon to Morse’s lacunary

principle, see Remark 3.3 on page 58.

This result is used in Theorem 3.5 on page 59 in which it is shown that every

2-neighborly member of K�d� is a tight triangulation for d C 4. Thus, all tight-

neighborly triangulations as defined in [93] are tight for d C 4 (see Section 3.3 on

page 62).

This chapter is organized as follows. Section 3.1 on the next page investigates on

a certain family of perfect Morse functions. The latter functions can be used to

give a combinatorial condition for the tightness of odd-dimensional combinatorial

manifolds in terms of properties of the vertex links of such manifolds.

In Section 3.2 on page 58 the tightness of members of K�d� is discussed, followed

by a discussion of the tightness of tight-neighborly triangulations for d C 4 in

Section 3.3 on page 62. Both sections include examples of triangulations for which

the stated theorems hold.

In Section 3.4 on page 67 the classes Kk�d� of combinatorial manifolds are

introduced as a generalization of Walkup’s class K�d� and examples of manifolds

in these classes are presented. Furthermore, an analogue of Walkup’s theorem [137,

Thm. 5], [78, Prop. 7.2] for d � 6 is proved, assuming the validity of the Generalized

Lower Bound Conjecture 3.24 on page 71.
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3.1. Polar Morse functions and tightness

3.1 Polar Morse functions and tightness

There exist quite a few examples of triangulations in even dimensions that are known

to be tight (see Section 1.6 on page 26), whereas “for odd-dimensional manifolds it

seems to be difficult to transform the tightness of a polyhedral embedding into a

simple combinatorial condition”, as Kühnel [78, Chap. 5] observed. Consequently

there are few examples of triangulations of odd-dimensional manifolds that are

known to be tight apart from the sporadic triangulations in [84] and Kühnel’s

infinite series of Sd�1 " S1 for even d C 2.

It is a well known fact that in even dimensions a Morse function which only

has critical points of even indices is a tight function, cf. [25]. This follows directly

from the Morse relations, i.e. the fact that Pi��1�iµi � χ�M� holds for any Morse

function on a manifold M and the fact that µi C βi. In odd dimensions on the

other hand, argumenting in this way is impossible as we always have µ0 C 1 and

the alternating sum allows the critical points to cancel out each other. What will

be shown in Theorem 3.2 is that at least for a certain family of Morse functions the

tightness of its members can readily be determined in arbitrary dimensions d C 3.

Theorem 3.2

Let F be any field, d C 3 and f a polar Morse function on a combinatorial F-

orientable d-manifold M such that the number of critical points of f (counted with

multiplicity) satisfies

µd�i�f ; F� � µi�f ; F� �
¢̈̈̈
¦̈̈̈
¤

0 for even 2 B i B 
d2�
ki for odd 1 B i B 
d2� ,

where ki C 0 for arbitrary d and moreover k
d~2� � k�d~2� � 0, if d is odd. Then f is a

tight function.

Proof. Note that as f is polar, M necessarily is connected and orientable. If d � 3,

µ0 � µ3 � 1 and µ1 � µ2 � 0, and the statement follows immediately. Thus, let us

only consider the case d C 4 from now on. Assume that the vertices v1, . . . , vn of

M are ordered by their f -values, f�v1� @ f�v2� @ � � � @ f�vn�. In the long exact
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Chapter 3. Combinatorial manifolds with stacked vertex links

sequence for the relative homology

. . . � Hi�1�Mv,Mv��v�� � Hi�Mv��v�� ι�i
� Hi�Mv� �

� Hi�Mv,Mv��v�� � Hi�1�Mv��v�� � . . .
(3.1)

the tightness of f is equivalent to the injectivity of the inclusion map ι�i for all

i and all v > V �M�. The injectivity of ι�i means that for any fixed j � 1, . . . , n,

the homology Hi�Mvj
,Mvj�1

� (where Mv0 � g) persists up to the maximal level

Hi�Mvn� � Hi�M� and is mapped injectively from level vj to level vj�1. This

obviously is equivalent to the condition for tightness given in Definition 1.42 on

page 27. Thus, tight triangulations can also be interpreted as triangulations with

the maximal persistence of the homology in all dimensions with respect to the vertex

ordering induced by f (see [39]). Hence, showing the tightness of f is equivalent

to proving the injectivity of ι�i at all vertices v > V �M� and for all i, what will be

done in the following. Note that for all values of i for which µi � 0, nothing has to

be shown so that we only have to deal with the cases where µi A 0 below.

The restriction of the number of critical points being non-zero only in every

second dimension results in

dimFHi�Mv,Mv��v�� B µi�f ; F� � 0

and

dimFHd�i�Mv,Mv��v�� B µd�i�f ; F� � 0

and thus in Hi�Mv,Mv��v�� � Hd�i�Mv,Mv��v�� � 0 for all even 2 B i B 
d2� and

all v > V �M�, as M is F-orientable. This implies a splitting of the long exact

sequence (3.1) at every second dimension, yielding exact sequences of the forms

0 � Hi�1�Mv��v�� ι�i�1
� Hi�1�Mv� � Hi�1�Mv,Mv��v�� � . . .
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3.1. Polar Morse functions and tightness

and

0 � Hd�i�1�Mv��v�� ι�d�i�1
� Hd�i�1�Mv� � Hd�i�1�Mv,Mv��v�� � . . . ,

where the inclusions ι�i�1 and ι�d�i�1 are injective for all vertices v > V �M�, again

for all even 2 B i B 
d2�. Note in particular, that µd�2 � 0 always holds. For critical

points of index d � 1, the situation looks alike:

0 � Hd�Mv��v��´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�0

� Hd�Mv� � Hd�Mv,Mv��v�� �
� Hd�1�Mv��v�� ι�d�1

� Hd�1�Mv� � Hd�1�Mv,Mv��v�� � . . .

By assumption, f only has one maximal vertex as it is polar. Then, if v is not the

maximal vertex with respect to f , Hd�Mv,Mv��v�� � 0 and thus ι�d�1 is injective.

If, on the other hand, v is the maximal vertex with respect to f , one has

Hd�M� �Hd�Mv,Mv��v��,
as Mv �M in this case. Consequently, by the exactness of the sequence above, ι�d�1

is also injective in this case. Altogether it follows that ι�i is injective for all i and

for all vertices v > V �M� and thus that f is F-tight. j

As we will see in Section 3.2 on the following page, this is a condition that can

be translated into a purely combinatorial one. Examples of manifolds to which

Theorem 3.2 on page 55 applies will be given in the following sections.

3.3 Remark

(i) Theorem 3.2 can be understood as a combinatorial equivalent of Morse’s

lacunary principle [26, Lecture 2]. The lacunary principle in the smooth case

states that if f is a smooth Morse function on a smooth manifold M such

that its Morse polynomial Mt�f� contains no consecutive powers of t, then f

is a perfect Morse function.

(ii) Due to the Morse relations, Theorem 3.2 puts a restriction on the topology

of manifolds admitting these kinds of Morse functions. In particular, these
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must have vanishing Betti numbers in the dimensions where the number of

critical points is zero. Note that in dimension d � 3 the theorem thus only

holds for homology 3-spheres with β1 � β2 � 0 and no statements concerning

the tightness of triangulations with β1 A 0 can be made. One way of proving

the tightness of a 2-neighborly combinatorial 3-manifold M would be to show

that the mapping

H2�Mv��H2�M,Mv��v�� (3.2)

is surjective for all v > V �M� and all rsl functions f . This would result in

an injective mapping in the homology group H1�Mv��v�� � H1�Mv� for

all v > V �M� – as above by virtue of the long exact sequence for the relative

homology – and thus in the 1-tightness of M , which is equivalent to the (F2-

)tightness of M for d � 3, see [78, Prop. 3.18]. Unfortunately, there does not

seem to be an easy to check combinatorial condition on M that is sufficient for

the surjectivity of the mapping (3.2), in contrast to the case of a combinatorial

condition for the 0-tightness of M for which this is just the 2-neighborliness

of M .

3.2 Tightness of members of K�d�

In this section we will investigate the tightness of members of Walkup’s class K�d�,
the family of all combinatorial d-manifolds that only have stacked �d � 1�-spheres

as vertex links. For d B 2, K�d� is the set of all triangulated d-manifolds. Kalai [68]

showed that the stacking-condition of the links puts a rather strong topological

restriction on the members of K�d�:
Theorem 3.4 (Kalai, [68, 11])

Let d C 4. Then M is a connected member of K�d� if and only if M is obtained

from a stacked d-sphere by β1�M� combinatorial handle additions.

Here a combinatorial handle addition to a complex C is defined as usual (see

[137, 68, 93]) as the complex Cψ obtained from C by identifying two facets ∆1 and

∆2 of C such that v > V �∆1� is identified with w > ∆2 only if d�v,w� C 3, where
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3.2. Tightness of members of K�d�

V �X� denotes the vertex set of a simplex X and d�v,w� the distance of the vertices

v and w in the 1-skeleton of C seen as undirected graph (cf. [9]).

In other words Kalai’s theorem states that any connected M > K�d� is necessarily

homeomorphic to a connected sum with summands of the form S1 � Sd�1 and

S1 " Sd�1, compare [93]. Looking at 2-neighborly members of K�d�, the following

observation concerning the embedding of the triangulation can be made.

Theorem 3.5

Let d � 2 or d C 4. Then any 2-neighborly member of K�d� yields a tight triangulation

of the underlying PL manifold.

Note that since any triangulated 1-sphere is stacked, K�2� is the set of all

triangulated surfaces and that any 2-neighborly triangulation of a surface is tight.

The two conditions of the manifold being 2-neighborly and having only stacked

spheres as vertex links are rather strong as the only stacked sphere that is k-

neighborly, k C 2, is the boundary of the simplex, see also Remark 3.20 on page 69.

Thus, the only k-neighborly member of K�d�, k C 3, d C 2, is the boundary of the

�d � 1�-simplex.

The following lemma will be needed for the proof of Theorem 3.5.

Lemma 3.6 Let S be a stacked d-sphere, d C 3, and V � b V �S�. Then

Hd�j�spanS�V ��� � 0 for 2 B j B d � 1,

where H� denotes the simplicial homology groups.

Proof. Assume that S0 � ∂∆d�1 and assume Si�1 to be obtained from Si by a single

stacking operation such that there exists an N > N with SN � S. Then Si�1 is

obtained from Si by removing a facet of Si and the boundary of a new d-simplex

Ti followed by a gluing operation of Si and Ti along the boundaries of the removed

facets. This process can also be understood in terms of a bistellar 0-move carried

out on a facet of Si. Since this process does not remove any �d � 1�-simplices from

Si or Ti we have skeld�1�Si� ` skeld�1�Si�1�.
We prove the statement by induction on i. Clearly, the statement is true for i � 0,

as S0 � ∂∆d�1 and ∂∆d�1 is �d � 1�-neighborly. Now assume that the statement
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Chapter 3. Combinatorial manifolds with stacked vertex links

holds for Si and let V �

i�1 ` V �Si�1�. In the following we can consider the connected

components Ck of spanSi�1
�V �

i�1� separately. If Ck ` Si or Ck ` Ti then the statement

is true by assumption and the �d�1�-neighborliness of ∂∆d�1, respectively. Otherwise

let P1 �� Ck 9 Si x g and P2 �� Ck 9 Ti x g. Then

Hd�j�P1� �Hd�j�P1 9 Ti� and Hd�j�P2� �Hd�j�P2 9 Si�.
This yields

Hd�j�P1 8 P2��Hd�j��P1 8 P2� 9 Si 9 Ti�
�Hd�j�spanSi9Ti

�V �

i�1��
�Hd�j�spanSi9Ti

�V �

i�1 9 V �Si 9 Ti���
�0,

as Si 9 Ti � ∂∆d, which is �d � 1�-neighborly, so that the span of any vertex set has

vanishing �d � j�-th homology for 2 B j B d � 1. j

Proof (of Theorem 3.5 on the previous page). For d � 2, see [78] for a proof. From

now on assume that d C 4. As can be shown via excision (see, for example [75]), if

M is a combinatorial d-manifold, f �M � R an rsl function on M and v > V �M�,
then

H��Mv,Mv��v�� �H��Mv 9 st�v�,Mv 9 lk�v��.
Now let d C 4, 1 @ i @ d � 1. The long exact sequence for the relative homology

. . . � Hd�i�Mv 9 st�v�� � Hd�i�Mv 9 st�v�,Mv 9 lk�v�� �
� Hd�i�1�Mv 9 lk�v�� � Hd�i�1�Mv 9 st�v�� � . . .

yields an isomorphism

Hd�i�Mv 9 st�v�,Mv 9 lk�v�� �Hd�i�1�Mv 9 lk�v��, (3.3)

as Hd�i�Mv 9 st�v�� �Hd�i�1�Mv 9 st�v�� � 0. Note here, that Mv 9 st�v� is a cone

over Mv 9 lk�v� and thus contractible.
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Since M > K�d�, all vertex links in M are stacked �d � 1�-spheres and thus

Lemma 3.6 on page 59 applies to the right hand side of (3.3) on the preceding

page. This implies that a d-manifold M > K�d�, d C 4, cannot have critical points

of index 2 B i B d � 2, i.e. µ2�f ; F� � � � � � µd�2�f ; F� � 0.

Furthermore, the 2-neighborliness of M implies that any function on M is polar.

Thus, all prerequisites of Theorem 3.2 on page 55 are fulfilled, f is tight and

consequently M is a tight triangulation, what was to be shown. j

3.7 Remark In even dimensions d C 4, Theorem 3.5 on page 59 can also be proved

without using Theorem 3.2 on page 55. In this case the statement follows from the

2-neighborliness of M (that yields µ0�f ; F� � β0 and µd�f ; F� � βd), and the Morse

relations 1.57 on page 36 which then yield µ1�f ; F� � β1 and µd�1�f ; F� � βd�1 for

any rsl function f , as µ2�f ; F� � � � � � µd�2�f ; F� � 0.

As a consequence, the stacking condition of the links already implies the vanishing

of β2, . . . , βd�2 (as by the Morse relations µi C βi), in accordance with Kalai’s

Theorem 3.4 on page 58.

An example of a series of tight combinatorial manifolds is the infinite series of

sphere bundles over the circle due to Kühnel [74]. The triangulations in this series

are all 2-neighborly on f0 � 2d � 3 vertices. They are homeomorphic to Sd�1 � S1

in even dimensions and to Sd�1 " S1 in odd dimensions. Furthermore, all links

are stacked and thus Theorem 3.5 applies providing an alternative proof of the

tightness of the triangulations in this series.

Corollary 3.8

All members Md of the series of triangulations in [74] are 2-neighborly and lie in

the class K�d�. They are thus tight triangulations by Theorem 3.5.

Another example of a triangulation to which Theorem 3.5 on page 59 applies is

due to Bagchi and Datta [11] and will be given in the following section. It is an

example of a so called tight-neighborly triangulation as defined by Lutz, Sulanke

and Swartz [93]. For this class of manifolds, Theorem 3.5 on page 59 holds for d � 2

and d C 4. Tight-neighborly triangulations will be described in more detail in the

next section.
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3.3 Tight-neighborly triangulations

Beside the class of combinatorial d-manifolds with stacked spheres as vertex links

K�d�, Walkup [137] also defined the class H�d�. This is the family of all simplicial

complexes that can be obtained from the boundary complex of the �d � 1�-simplex

by a series of zero or more of the following three operations: (i) stellar subdivision

of facets, (ii) combinatorial handle additions and (iii) forming connected sums of

objects obtained from the first two operations.

The two classes are closely related. Obviously, the relation H�d� ` K�d� holds.

Kalai [68] showed the reverse inclusion K�d� ` H�d� for d C 4.

Note that the condition of the 2-neighborliness of an M > K�d� in Theorem 3.5

on page 59 is equivalent to the first Betti number β1�M� being maximal with

respect to the vertex number f0�M� of M (as a 2-neighborly triangulation does

not allow any handle additions). Such manifolds are exactly the cases of equality

in [108, Th. 5.2]. In their recent work [93], Lutz, Sulanke and Swartz prove the

following theorem2.

Theorem 3.9 (Theorem 5 in [93])

Let K be any field and let M be a K-orientable triangulated d-manifold with d C 3.

Then

f0�M� C �1

2
�2d � 3 �

»
1 � 4�d � 1��d � 2�β1�M ; K��� . (3.4)

3.10 Remark As pointed out in [93], for d � 2 inequality (3.4) coincides with

Heawood’s inequality

f0�M� C �1

2
�7 �

»
49 � 24χ�M���

if one replaces β1�M ; K� by 1
2β1�M ; K� to account for the double counting of the

middle Betti number β1�M ; K� of surfaces by Poincaré duality. Inequality (3.4) can

2The author would like to thank Frank Lutz for fruitful discussions about tight-neighborly
triangulations and pointing him to the work [93] in the first place.
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also be written in the form

�f0 � d � 1

2
� C �d � 2

2
�β1.

Thus, Theorem 5 in [93] settles Kühnel’s conjectured bounds

�f0 � d � j � 2

j � 1
� C �d � 2

j � 1
�βj with 1 B j B 
d � 1

2
�

in the case j � 1.

For β1 � 1, the bound (3.4) on the preceding page coincides with the Brehm-

Kühnel bound f0 C 2d� 4� j for �j � 1�-connected but not j-connected d-manifolds

in the case j � 1, see [27]. Inequality (3.4) is sharp by the series of vertex minimal

triangulations of sphere bundles over the circle presented in [74].

Triangulations of connected sums of sphere bundles �S2 �S1�#k and �S2 "S1�#k

attaining equality in (3.4) on the facing page for d � 3 were discussed in [93]. Such

triangulations are necessarily 2-neighborly and Lutz, Sulanke and Swartz defined

the following.

Definition 3.11 (tight-neighborly triangulation, [93]) Let d C 2 and let M

be a triangulation of �Sd�1 � S1�#k or �Sd�1 " S1�#k attaining equality in (3.4) on

the preceding page. Then M is called a tight-neighborly triangulation.

For d C 4, all triangulations of F-orientable F-homology d-manifolds with equality

in (3.4) lie in H�d� and are tight-neighborly triangulations of �Sd�1 � S1�#k or

�Sd�1 " S1�#k by Theorem 5.2 in [108].

The authors conjectured [93, Conj. 13] that all tight-neighborly triangulations

are tight in the classical sense of Definition 1.42 on page 27 and showed that the

conjecture holds in the following cases: for β1 � 0,1 and any d and for d � 2 and

any β1. Indeed, the conjecture also holds for any d C 4 and any β1 as it is a direct

consequence of Theorem 3.5 on page 59.

Corollary 3.12

For d C 4 all tight-neighborly triangulations are tight.
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δ3

δ�3

δ1

δ�1

δ2
δ�2

Figure 3.1: Dual graph of the 5-ball B5
30 presented in [11]. In order to obtain M4

15

from the boundary of B5
30, three handles are added over the facet pairs�δi, δ�i�, 1 B i B 3.

Proof. For d C 4 one has H�d� � K�d� and the statement is true for all 2-neighborly

members of K�d� by Theorem 3.5 on page 59. j

It remains to be investigated whether for vertex minimal triangulations of d-

handlebodies, d C 3, the reverse implication is true, too, i.e. that for this class of

triangulations the terms of tightness and tight-neighborliness are equivalent.

Question 3.13 Let d C 4 and let M be a tight triangulation homeomorphic to

�Sd�1 � S1�#k or �Sd�1 " S1�#k. Does this imply that M is tight-neighborly?

As was shown in [93], at least for values of β1 � 0,1 and any d and for d � 2 and

any β1 this is true.

One example of a triangulation for which Theorem 3.5 on page 59 holds, is due

to Bagchi and Datta [11]. The triangulation M4
15 of �S3 " S1�#3 from [11] is a

2-neighborly combinatorial 4-manifold on 15 vertices that is a member of K�4�
with f -vector f � �15, 105, 230, 240, 96�. Since M4

15 is tight-neighborly, we have

the following corollary.

Corollary 3.14

The 4-manifold M4
15 given in [11] is a tight triangulation.

Bagchi and Datta constructed M4
15 from the boundary of a 5-ball B5

30 by three

simultaneous handle additions, see Figure 3.1.

The next possible triples of values of β1, d and n for which a 2-neighborly member

of K�d� could exist (compare [93]) are listed in Table 3.1. Apart from the sporadic
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3.3. Tight-neighborly triangulations

Table 3.1: Known and open cases for β1, d and n of 2-neighborly members of K�d�.
β1 d n top. type reference

0 any d d � 1 Sd�1 ∂∆d

1 any even d C 2 2d � 3 Sd�1 � S1 [74] (d � 2: [102, 35])

1 any odd d C 2 2d � 3 Sd�1 " S1 [74] (d � 3: [137, 5])

2 13 35 ?

3 4 15 �S3 " S1�#3 [11]

5 5 21 ?

8 10 44 ?

examples in dimension 4 and the infinite series of higher dimensional analogues

of Császár’s torus in arbitrary dimension d C 2 due to Kühnel [74], cf. [83, 9, 33],

mentioned earlier, no further examples are known as of today.

Especially in (the odd) dimension d � 3, things seem to be a bit more subtle, as

already laid out in Remark 3.3 on page 58. As Altshuler and Steinberg [4] showed

that the link of any vertex in a neighborly 4-polytope is stacked (compare also

Remark 8.5 in [68]), we know that the class K�3� is rather big compared to H�3�.
Thus, a statement equivalent to Theorem 3.5 on page 59 is not surprisingly false

for members of K�3�, a counterexample being the boundary of the cyclic polytope

∂C�4,6� > K�3� which is 2-neighborly but certainly not a tight triangulation as

it has empty triangles. The only currently known example of a tight-neighborly

combinatorial 3-manifold is a 9-vertex triangulation M3 of S2 " S1 independently

found by Walkup [137] and Altshuler and Steinberg [5]. This triangulation is

combinatorially unique, as was shown by Bagchi and Datta [10]. For d � 3, it is

open whether there exist tight-neighborly triangulations for higher values of β1 C 2,

see [93, Question 12].

The fact that M3 is a tight triangulation is well known, see [78]. Yet, we will

present here another proof of the tightness of M3. It is a rather easy procedure

when looking at the 4-polytope P the boundary of which M3 was constructed from

by one elementary combinatorial handle addition, see also [11].
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Chapter 3. Combinatorial manifolds with stacked vertex links

Lemma 3.15 Walkup’s 9-vertex triangulation M3 of S2 " S1 is tight.

Proof. Take the stacked 4-polytope P with f -vector f�P � � �13,42,58,37,9� from

[137]. Its facets are

`1 2 3 4 5e, `2 3 4 5 6e, `3 4 5 6 7e,
`4 5 6 7 8e, `5 6 7 8 9e, `6 7 8 9 10e,
`7 8 9 10 11e, `8 9 10 11 12e, `9 10 11 12 13e.

As P is stacked it has missing edges (called diagonals), but no empty faces of higher

dimension.

Take the boundary ∂P of P . By construction, P has no inner i-faces, i B 2 so

that ∂P has the 36 diagonals of P and additionally 8 empty tetrahedra, but no

empty triangles. As ∂P is a 3-sphere, the empty tetrahedra are all homologous to

zero.

Now form a 1-handle over ∂P by removing the two tetrahedra `1,2,3,4e and

`10, 11, 12, 13e from ∂P followed by an identification of the four vertex pairs �i, i�9�,
1 B i B 4, where the newly identified vertices are labeled with 1, . . . ,4.

This process yields a 2-neighborly combinatorial manifold M3 with 13�4 � 9

vertices and one additional empty tetrahedron `1, 2, 3, 4e, which is the generator of

H2�M�.
As M3 is 2-neighborly it is 0-tight and as ∂P had no empty triangles, two empty

triangles in the span of any vertex subset V � ` V �M� are always homologous. Thus,

M3 is a tight triangulation. j

The construction in the proof above could probably be used in the general case

with d � 3 and β1 C 2: one starts with a stacked 3-sphere M0 as the boundary of a

stacked 4-polytope which by construction does not contain empty 2-faces and then

successively forms handles over this boundary 3-sphere (obtaining triangulated

manifolds M1, . . . ,Mn �M) until the resulting triangulation M is 2-neighborly and

fulfills equality in (3.4) on page 62. Note that this can only be done in the regular

cases of (3.4), i.e. where (3.4) admits integer solutions for the case of equality. For

a list of possible configurations see [93].
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Figure 3.2: A minimally 2-stacked S2 as the boundary complex of a subdivided
3-octahedron.

3.4 k-stacked spheres and the class Kk�d�

McMullen and Walkup [98] extended the notion of stacked polytopes to k-stacked

polytopes as simplicial d-polytopes that can be triangulated without introducing

new j-faces for 0 B j B d � k � 1. More generally, we can define the following.

Definition 3.16 (k-stacked balls and spheres, [98, 68]) A k-stacked �d� 1�-
ball, 0 B k B d, is a triangulated �d�1�-ball that has no interior j-faces, 0 B j B d�k. A

minimally k-stacked �d�1�-ball is a k-stacked �d�1�-ball that is not �k�1�-stacked.

The boundary of any (minimally) k-stacked �d � 1�-ball is called a (minimally)

k-stacked d-sphere.

Note that in this context the ordinary stacked d-spheres are exactly the 1-stacked

d-spheres. Note also that a k-stacked d-sphere is obviously also �k � l�-stacked,

where l > N, k�l B d, compare [8]. The simplex ∆d�1 is the only 0-stacked �d�1�-ball

and the boundary of the simplex ∂∆d�1 is the only 0-stacked d-sphere. Keep in

mind that all triangulated d-spheres are at least d-stacked [8, Rem. 9.1].

Figure 3.2 shows the boundary of an octahedron as an example of a minimally 2-

stacked 2-sphere S with 6 vertices. The octahedron that is subdivided along the inner

diagonal �5, 6� can be regarded as a triangulated 3-ball B with skel0�S� � skel0�B�
and ∂B � S. Note that although all vertices of B are on the boundary, there is

an inner edge so that the boundary is 2-stacked, but not 1-stacked. In higher

dimensions, examples of minimally d-stacked d-spheres exist as boundary complexes

of subdivided d-cross polytopes with an inner diagonal.
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Akin to the 1-stacked case, a more geometrical characterization of k-stacked

d-spheres can be given via bistellar moves (see Section 1.5 on page 24), at least for

k B �d2�. Note that for any bistellar move ΦA�M�, A �B forms a �d � 1�-simplex.

Thus, any sequence of bistellar moves defines a sequence of �d � 1�-simplices – this

we will call the induced sequence of �d � 1�-simplices in the following.

The characterization of k-stacked d-spheres using bistellar moves is the following.

Lemma 3.17 For k B �d2�, a complex S obtained from the boundary of the �d � 1�-

simplex by a sequence of bistellar i-moves, 0 B i B k � 1, is a k-stacked d-sphere.

Proof. As k B �d2�, the sequence of �d � 1�-simplices induced by the sequence of

bistellar moves is duplicate free and defines a simplicial �d� 1�-ball B with ∂B � S.

Furthermore, skeld�k�B� � skeld�k�S� holds as no bistellar move in the sequence

can contribute an inner j-face to B, 0 B j B d� k. Thus, S is a k-stacked d-sphere.j

Keep in mind though, that this interpretation does not hold for values k A �d2� as

in this case the sequence of �d � 1�-simplices induced by the sequence of bistellar

moves may have duplicate entries, as opposed to the case with k B �d2�.
In terms of bistellar moves, the minimally 2-stacked sphere in Figure 3.2 on the

preceding page can be constructed as follows: Start with a solid tetrahedron and

stack another tetrahedron onto one of its facets (a 0-move). Now introduce the

inner diagonal �5,6� via a bistellar 1-move. Clearly, this complex is not bistellarly

equivalent to the simplex by only applying reverse 0-moves (and thus not (1-

)stacked) but it is bistellarly equivalent to the simplex by solely applying reverse

0-, and 1-moves and thus minimally 2-stacked.

The author is one of the authors of the toolkit simpcomp [44, 45] for simplicial

constructions in the GAP system [51]. simpcomp contains a randomized algorithm

that checks whether a given d-sphere is k-stacked, k B �d2�, using the argument

above.

With the notion of k-stacked spheres at hand we can define a generalization of

Walkup’s class K�d�.
Definition 3.18 (the class Kk�d�) Let Kk�d�, k B d, be the family of all d-

dimensional simplicial complexes all whose vertex links are k-stacked spheres.
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Note that Kd�d� is the set of all triangulated manifolds for any d and that

Walkup’s class K�d� coincides with K1�d� above. In analogy to the 1-stacked

case, a �k � 1�-neighborly member of Kk�d� with d C 2k necessarily has vanishing

β1, . . . , βk�1. Thus, it seems reasonable to ask for the existence of a generalization

of Kalai’s Theorem 3.4 on page 58 to the class of Kk�d� for k C 2.

Furthermore, one might be tempted to ask for a generalization of Theorem 3.5

on page 59 to the class Kk�d� for k C 2. Unfortunately, there seems to be no

direct way of generalizing Theorem 3.5 to also hold for members of Kk�d� giving a

combinatorial condition for the tightness of such triangulations. The key obstruction

here is the fact that a generalization of Lemma 3.6 on page 59 is impossible. While

in the case of ordinary stacked spheres a bistellar 0-move does not introduce inner

simplices to the �d � 1�-skeleton, the key argument in Lemma 3.6, this is not true

for bistellar i-moves for i C 1.

Nonetheless, an analogous result to Theorem 3.5 should be true for such triangu-

lations.

Question 3.19 Let d C 4 and 2 B k B 
d�1
2 � and let M be a �k � 1�-neighborly

combinatorial manifold such that M > Kk�d�. Does this imply the tightness of M?

3.20 Remark Note that all vertex links of �k � 1�-neighborly members of Kk�d�
are k-stacked k-neighborly spheres. McMullen and Walkup [98, Sect. 3] showed that

there exist k-stacked k-neighborly �d�1�-spheres on n vertices for any 2 B 2k B d @ n.

Some examples of such spheres will be given in the following. The conditions of

being k-stacked and k-neighborly at the same time is strong as the two conditions

tend to exclude each other in the following sense: McMullen and Walkup showed

that if a d-sphere is k-stacked and k�-neighborly with k� A k, then it is the boundary

of the simplex. In that sense the k-stacked k-neighborly spheres appear as the most

strongly restricted non-trivial objects of this class: The conditions in Theorem 3.5

on page 59 (with k � 1) and in Question 3.19 are the most restrictive ones still

admitting non-trivial solutions. If one asks that the links are minimally l-stacked

with l @ k instead of minimally k-stacked or if one demands the complexes to be

�k �m�-neighborly, m A 1, instead of just �k � 1�-neighborly, this only leaves the

boundary complex of the simplex as a possible solution.
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Chapter 3. Combinatorial manifolds with stacked vertex links

Table 3.2: Some known tight triangulations and their membership in the classes
Kk�d�, cf. [84], with n denoting the number of vertices of the triangulation
and nb. its neighborliness.

d top. type n nb. k

4 CP 2 9 3 2

4 K3 16 3 2

4 �S3 " S1�#�CP 2�#5 15 2 2

5 S3 � S2 12 3 2

5 SU�3�~SO�3� 13 3 3

6 S3 � S3 13 4 3

Kühnel and Lutz [84] gave an overview of the currently known tight triangulations.

The statement of Question 3.19 on the preceding page holds for all the triangulations

listed in [84]. Note that there even exist k-neighborly triangulations in Kk�d� that

are tight and thus fail to fulfill the prerequisites of Question 3.19 (see Table 3.2).

Although we did not succeed in proving conditions for the tightness of trian-

gulations lying in Kk�d�, k C 2, these have nonetheless interesting properties that

we will investigate upon in the following. Also, many known tight triangulations

are members of these classes, as will be shown. Our first observation is that the

neighborliness of a triangulation is closely related to the property of being a member

of Kk�d�.
Lemma 3.21 Let k > N and M be a combinatorial d-manifold, d C 2k, that is a

�k � 1�-neighborly triangulation. Then M > Kd�k�d�.

Proof. If M is �k � 1�-neighborly, then for any v > V �M�, lk�v� is k-neighborly.

As lk�v� is PL homeomorphic to ∂∆d (since M is a combinatorial manifold)

there exists a d-ball B with ∂B � lk�v� (cf. [8]). Since lk�v� is k-neighborly,

skelk�1�B� � skelk�1�lk�v��. By Definition 3.16 on page 67 the link of every vertex

v > V �M� then is �d � k�-stacked and thus M > Kd�k�d�. j
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Kühnel [78, Chap. 4] investigated �k�1�-neighborly triangulations of 2k-manifolds

and showed that all these are tight triangulations. By Lemma 3.21 on the preceding

page all their vertex links are k-stacked spheres and we have the following result.

Corollary 3.22

Let M be a �k � 1�-neighborly (tight) triangulation of a 2k-manifold. Then M lies

in Kk�2k�.

In particular this holds for many vertex minimal (tight) triangulations of 4-

manifolds.

Corollary 3.23

The known examples of the vertex-minimal tight triangulation of a K3-surface with

f -vector f � �16,120,560,720,288� due to Casella and Kühnel [29] and the unique

vertex-minimal tight triangulation of CP 2 with f -vector f � �9,36,84,90,36� due

to Kühnel [82], cf. [81] are 3-neighborly triangulations that lie in K2�4�.

Let us now shed some light on properties of members of K2�6�. First recall that

there exists a Generalized Lower Bound Conjecture (GLBC) due to McMullen and

Walkup as an extension to the classical Lower Bound Theorem for triangulated

spheres as follows.

Conjecture 3.24 (GLBC, cf. [98, 8])

For d C 2k � 1, the face-vector �f0, . . . , fd� of any triangulated d-sphere S satisfies

fj C

¢̈̈̈̈
¨̈̈̈̈
¦̈̈̈
¨̈̈̈̈̈
¤

Pk�1
i��1��1�k�i�1�j�i�1

j�k
��d�i�1

j�i
�fi, if k B j B d � k,

Pk�1
i��1��1�k�i�1 ��j�i�1

j�k
��d�i�1

j�i
�

�� k
d�j�1

�� d�i
d�k�1

�
�Pk�1

l�d�j��1�k�l� l
d�j

�� d�i
d�l�1

�� fi, if d � k � 1 B j B d.

(3.5)

Equality holds here for any j if and only if S is a k-stacked d-sphere.

The GLBC implies the following theorem for d � 6, which is a 6-dimensional

analogue of Walkup’s theorem [137, Thm. 5], [78, Prop. 7.2], see also Swartz’

Theorem 4.10 in [135].
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Theorem 3.25

Assuming the validity of the Generalized Lower Bound Conjecture 3.24 on the

preceding page, for any combinatorial 6-manifold M the inequality

f2�M� C 28χ�M� � 21f0 � 6f1 (3.6)

holds. If M is 2-neighborly, then

f2�M� C 28χ�M� � 3f0�f0 � 8� (3.7)

holds. In either case equality is attained if and only if M > K2�6�.

Proof. Clearly,

f3�M� � 1

4
Q

v>V �M�
f2�lk�v��. (3.8)

By applying the GLBC 3.24 on the previous page to all the vertex links of M one

obtains a lower bound on f2�lk�v�� for all v > V �M�:
f2�lk�v�� C 35 � 15f0�lk�v�� � 5f1�lk�v��. (3.9)

Here equality is attained if and only if lk�v� is 2-stacked. Combining (3.8) and (3.9)

yields a lower bound

f3�M�C1
4 Pv>V �M� 35 � 15f0�lk�v�� � 5f1�lk�v��

�
5
4 �7f0�M� � 6f1�M� � 3f2�M�� , (3.10)

for which equality holds if and only if M > K2�6�.
If we eliminate f4, f5 and f6 from the Dehn-Sommerville-equations for combina-

torial 6-manifolds, we obtain the linear equation

35f0 � 15f1 � 5f2 � f3 � 35χ�M�. (3.11)
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3.4. k-stacked spheres and the class Kk�d�

Inserting inequality (3.10) into (3.11) and solving for f2�M� yields the claimed

lower bounds (3.6) and (3.7) on the preceding page,

f2�M�C28χ�M� � 21f0�M� � 6f1�M�
�28χ�M� � 3f0�f0�M� � 8´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C0

�, (3.12)

where the 2-neighborliness of M was used in the last line. j

For a possible 14-vertex triangulation of S4 � S2 (with χ � 4) Inequality (3.12)

becomes

f2 C 4 � 28 � 3 � 14 � �14 � 8� � 364,

but together with the trivial upper bound f2 B �f0
3
� this already would imply that

such a triangulation necessarily is 3-neighborly, as �14
3
� � 364.

So, just by asking for a 2-neighborly combinatorial S4 � S2 on 14 vertices that

lies in K2�6� already implies that this triangulation is 3-neighborly. Also, the

example would attain equality in the Brehm-Kühnel bound [27] as an example

of a 1-connected 6-manifold with 14 vertices. We strongly conjecture that this

triangulation is tight, see Question 3.19 on page 69.
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Chapter 4

Hamiltonian submanifolds of cross poly-

topes

In this chapter, we investigate Hamiltonian submanifolds of cross polytopes and

their properties more closely1.

The d-dimensional cross polytope (or d-octahedron) βd is defined as the convex

hull of the 2d points

x�i �� �0, . . . ,0,�1,0, . . . ,0� > Rd.

It is a simplicial and regular polytope and it is centrally-symmetric with d missing

edges called diagonals, each between two antipodal points of type x�i and x�i . Its

edge graph is the complete d-partite graph with two vertices in each partition,

sometimes denoted by K2 � � �K2. See Figure 4.1 on the following page for an

illustration of the cross polytope in dimensions d � 1, 2, 3 and Figures 2.1 on page 44

and 2.2 on page 45 for a visualization of the boundary complex of β4.

The d-cross polytope contains all simplexes not containing one of the d diagonal

diagonals and its f -vector satisfies the equality

fi�βd� � 2i�1� d

i � 1
�, 0 B i B d � 1.

1The first two sections of this chapter are essentially contained in [43], a joint work with Wolfgang
Kühnel.
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1

2β1

1
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β2

1
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4
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3
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β3

2
4

3

6

1 5

∂β3

Figure 4.1: The 1-, 2- and 3-cross polytopes β1, β2 and β3 and the boundary complex
∂β3 of β3.

In this chapter, polyhedral manifolds that appear as subcomplexes of the boundary

complex of cross polytopes are investigated. Remember that such a subcomplex

is called k-Hamiltonian if it contains the full k-skeleton of the polytope. We

investigate k-Hamiltonian 2k-manifolds and in particular 2-Hamiltonian 4-manifolds

in the d-dimensional cross polytope. These are the “regular cases” satisfying

equality in Sparla’s inequality. We present a new example with 16 vertices which

is highly symmetric with an automorphism group of order 128. Topologically it is

homeomorphic to a connected sum of 7 copies of S2�S2. By this example all regular

cases of n vertices with n @ 20 or, equivalently, all cases of regular d-polytopes with

d B 9 are now decided.

As pointed out in Section 1.6 on page 26, centrally symmetric analogues of tight

triangulations appear as Hamiltonian subcomplexes of cross polytopes. A centrally

symmetric triangulation is a triangulation such that there exists a combinatorial

involution operating on the face lattice of the triangulation without fixed points.

Any centrally symmetric triangulation thus has an even number of vertices and can

be interpreted as a subcomplex of some higher dimensional cross polytope. The

tightness of a centrally symmetric �k�1�-connected 2k-manifold M as a subcomplex
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4.1. Hamiltonian and tight subcomplexes of cross polytopes

of βd then is equivalent to M being a k-Hamiltonian subcomplex of βd, i.e. to M

being nearly �k � 1�-neighborly, see [78, Ch. 4].

As it turns out, all of the centrally symmetric triangulations of sphere products

Sl � Sm as k-Hamiltonian subcomplexes of a higher dimensional cross polytope

that we investigate in the following lie in the class Kmin�l,m��d�, cf. Chapter 3 on

page 53. This will be discussed in more detail in Section 4.3 on page 92.

In particular, we present an example of a centrally symmetric triangulation of

S4�S2 > K2�6� as a 2-Hamiltonian subcomplex of the 8-dimensional cross polytope.

This triangulation is part of a conjectured series of triangulations of sphere products

that are conjectured to be tight subcomplexes of cross polytopes.

4.1 Hamiltonian and tight subcomplexes of cross poly-

topes

Any 1-Hamiltonian 2-manifold in the d-cross polytope βd must have the following

beginning part of the f -vector:

f0 � 2d, f1 � 2d�d � 1�
It follows that the Euler characteristic χ of the 2-manifold satisfies

2 � χ � 2 � 2d � 2d�d � 1� � 4

3
d�d � 1� � 2

3
�d � 1��d � 3�.

These are the regular cases investigated in [66]. In terms of the genus g � 1
2�2 � χ�

of an orientable surface this equation reads as

g �
d � 1

1
�
d � 3

3
.

This remains valid for non-orientable surfaces if we assign the genus 1
2 to the

real projective plane. In any case χ can be an integer only if d � 0,1�3�. The

first possibilities, where all cases are actually realized by triangulations of closed

orientable surfaces [66], are indicated in Table 4.1 on the following page.
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Chapter 4. Hamiltonian submanifolds of cross polytopes

Table 4.1: Regular cases of 1-Hamiltonian 2-manifolds.

d 2 � χ genus g

3 0 0

4 2 1

6 10 5

7 16 8

9 32 16

10 42 3 � 7 � 21

12 66 3 � 11 � 33

13 80 8 � 5 � 40

15 112 8 � 7 � 56

Similarly, any 2-Hamiltonian 4-manifold in the d-cross polytope βd must have

the following beginning part of the f -vector:

f0 � 2d, f1 � 2d�d � 1�, f2 �
4

3
d�d � 1��d � 2�

It follows that the Euler characteristic χ satisfies

10�χ � 2� � f2 � 4f1 � 10f0 � 20

�
4

3
d�d � 1��d � 2� � 8d�d � 1� � 20d � 20

�
4

3
�d � 1��d � 3��d � 5�.

If we introduce the “genus” g � 1
2�χ � 2� of a simply connected 4-manifold as

the number of copies of S2 � S2 which are necessary to form a connected sum with

Euler characteristic χ, then this equation reads as

g �
d � 1

1
�
d � 3

3
�
d � 5

5
.
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4.1. Hamiltonian and tight subcomplexes of cross polytopes

These are the “regular cases”. Again the complex projective plane would have genus

1
2 here. Recall that any 2-Hamiltonian 4-manifold in the boundary of a convex

polytope is simply connected since the 2-skeleton is. Therefore the “genus” equals

half of the second Betti number.

Moreover, there is an Upper Bound Theorem and a Lower Bound Theorem as

follows.

Theorem 4.1 (E. Sparla [125])

If a triangulation of a 4-manifold occurs as a 2-Hamiltonian subcomplex of a

centrally-symmetric simplicial d-polytope then the following inequality holds

1

2
�χ�M� � 2� C d � 1

1
�
d � 3

3
�
d � 5

5
.

Moreover, for d C 6 equality is possible if and only if the polytope is affinely equivalent

to the d-dimensional cross polytope.

If there is a triangulation of a 4-manifold with a fixed point free involution then

the number n of vertices is even, i.e., n � 2d, and the opposite inequality holds

1

2
�χ�M� � 2� B d � 1

1
�
d � 3

3
�
d � 5

5
.

Moreover, equality in this inequality implies that the manifold can be regarded as a

2-Hamiltonian subcomplex of the d-dimensional cross polytope.

4.2 Remark The case of equality in either of these inequalities corresponds to the

“regular cases”. Sparla’s original equation

43�1
2�d � 1�

3
� � 10�χ�M� � 2�

is equivalent to the one given above.

By analogy, any k-Hamiltonian 2k-manifold in the d-dimensional cross polytope

satisfies the equation

��1�k 1

2
�χ � 2� � d � 1

1
�
d � 3

3
�
d � 5

5
� � �

d � 2k � 1

2k � 1
.
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Chapter 4. Hamiltonian submanifolds of cross polytopes

It is necessarily �k � 1�-connected which implies that the left hand side is half of

the middle Betti number which is nothing but the “genus”.

Furthermore, there is a conjectured Upper Bound Theorem and a Lower Bound

Theorem generalizing Theorem 4.1 on the previous page where the inequality has

to be replaced by

��1�k 1

2
�χ � 2� C d � 1

1
�
d � 3

3
�
d � 5

5
� � �

d � 2k � 1

2k � 1

or

��1�k 1

2
�χ � 2� B d � 1

1
�
d � 3

3
�
d � 5

5
� � �

d � 2k � 1

2k � 1
,

respectively, see [126], [107].

The discussion of the cases of equality is exactly the same. Sparla’s original

version

4k�1�1
2�d � 1�
k � 1

� � �2k � 1

k � 1
���1�k�χ�M� � 2�

is equivalent to the one above. In particular, for any k one of the “regular cases” is

the case of a sphere product Sk � Sk with ��1�k�χ � 2� � 2 (or “genus” g � 1) and

d � 2k � 2.

So far examples are available for 1 B k B 4, even with a vertex transitive automor-

phism group see [90], [84]. We hope that for k C 5 there will be similar examples as

well, compare Chapter 5 on page 97.

In the case of 2-Hamiltonian subcomplexes of cross polytopes the first non-trivial

example was constructed by Sparla as a centrally-symmetric 12-vertex triangulation

of S2 � S2 as a subcomplex of the boundary of the 6-dimensional cross polytope

[125], [88]. Sparla also proved the following analogous Heawood inequality for the

case of 2-Hamiltonian 4-manifolds in centrally symmetric d-polytopes

�1
2�d � 1�

3
� B 10�χ�M� � 2�

and the opposite inequality for centrally-symmetric triangulations with n � 2d

vertices.
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4.1. Hamiltonian and tight subcomplexes of cross polytopes

Higher-dimensional examples were found by Lutz [90]: There are centrally-

symmetric 16-vertex triangulations of S3 � S3 and 20-vertex triangulations of

S4�S4. The 2-dimensional example in this series is the well known unique centrally-

symmetric 8-vertex torus [79, 3.1]. All these are tightly embedded into the ambient

Euclidean space [84].

The generalized Heawood inequality for centrally symmetric 2d-vertex triangula-

tions of 2k-manifolds

4k�1�1
2�d � 1�
k � 1

� C �2k � 1

k � 1
���1�k�χ�M� � 2�

was conjectured by Sparla in [126] and later almost completely proved by Novik in

[107].

Here we show that Sparla’s inequality for 2-Hamiltonian 4-manifolds in the

skeletons of d-dimensional cross polytopes is sharp for d B 9. More precisely, we

show that each of the regular cases (that is, the cases of equality) for d B 9 really

occurs.

Since the cases d � 7 and d � 9 are not regular, the crucial point is the existence

of an example for d � 8 and, necessarily, χ � 16.

Main Theorem 4.3

1. All cases of 1-Hamiltonian surfaces in the regular polytopes are decided. In

particular there are no 1-Hamiltonian surfaces in the 24-cell, 120-cell or

600-cell.

2. All cases of 2-Hamiltonian 4-manifolds in the regular d-polytopes are decided

up to dimension d � 9. In particular, there is a new example of a 2-Hamiltonian

4-manifold in the boundary complex of the 8-dimensional cross polytope.

This follows from certain known results and a combination of Theorems 2.1, 2.2,

2.3 in Chapter 2 on page 39, and Theorem 4.4 on the following page.

The regular cases of 1-Hamiltonian surfaces are the following, and each case

occurs:
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Chapter 4. Hamiltonian submanifolds of cross polytopes

d-simplex: d � 0,2 �3� [114]

d-cube: any d C 3 [19],[112]

d-cross polytope: d � 0,1 �3� [66].

The regular cases of 2-Hamiltonian 4-manifolds for d B 9 are the following:

d-simplex: d � 5,8,9 [82]

d-cube: d � 5,6,7,8,9 [85]

d-cross polytope: d � 5,6,8 Theorem 4.4.

Here each of these cases occurs, except for the case of the 9-simplex [82]. Fur-

thermore, 2-Hamiltonian 4-manifolds in the d-cube are known to exist for any d C 5

[85]. In the case of the d-simplex the next regular case d � 13 is undecided, the case

d � 15 occurs [29]. The next regular case of a d-cross polytope is the case d � 10,

see Remark 4.6 on page 91.

4.2 2-Hamiltonian 4-manifolds in cross polytopes

In the case of 2-Hamiltonian 4-manifolds as subcomplexes of the d-dimensional

cross polytope we have the “regular cases” of equality

g �
1

2
�χ � 2� � d � 1

1
�
d � 3

3
�
d � 5

5
.

Here χ can be an integer only if d � 0, 1, 3�5�. Table 4.2 on the facing page indicates

the first possibilities.

Theorem 4.4

There is a 16-vertex triangulation of a 4-manifold M � �S2 �S2�#7 which can be re-

garded as a centrally-symmetric and 2-Hamiltonian subcomplex of the 8-dimensional

cross polytope. As one of the “regular cases” it satisfies equality in Sparla’s inequal-

ities in Theorem 4.1 on page 79 with the “genus” g � 7 and with d � 8.

Proof. Any 2-Hamiltonian subcomplex of a convex polytope is simply connected

[78, 3.8]. Therefore such an M , if it exists, must be simply connected, in particular

H1�M� �H3�M� � 0.
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4.2. 2-Hamiltonian 4-manifolds in cross polytopes

Table 4.2: Regular cases of 2-Hamiltonian 4-manifolds.

d χ � 2 “genus” g existence

5 0 0 S4 � ∂β5

6 2 1 S2 � S2 [125],[88]

8 14 7 new, see Theorem 4.4

10 42 3 � 7 � 21 see Remark 4.6

11 64 32 ?

13 128 64 ?

15 224 16 � 7 � 112 ?

16 286 11 � 13 � 143 ?

18 442 13 � 17 � 221 ?

20 646 17 � 19 � 323 ?

21 720 8 � 5 � 9 � 360 ?

In accordance with Sparla’s inequalities, the Euler characteristic χ�M� � 16 tells

us that the middle homology group is H2�M,Z� � Z14.

The topological type of M is then uniquely determined by the intersection form.

If the intersection form is even then by Rokhlin’s theorem – which states that the

intersection form of any closed PL 4-manifold is divisible by 16 – the signature

must be zero, which implies that M is homeomorphic to the connected sum of

7 copies of S2 � S2, see [50, 57, 116]. If the intersection form is odd then M is a

connected sum of 14 copies of �CP 2. We will show that the intersection form of

our example is even.

The f -vector f � �16, 112, 448, 560, 224� of this example is uniquely determined al-

ready by the requirement of 16 vertices and the condition to be 2-Hamiltonian in the

8-dimensional cross polytope. In particular there are 8 missing edges corresponding

to the 8 diagonals of the cross polytope which are pairwise disjoint.

Assuming a vertex-transitive automorphism group, the example was found by

using the software of F. H. Lutz described in [90]. The combinatorial automorphism
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Chapter 4. Hamiltonian submanifolds of cross polytopes

group G of our example is of order 128. With this particular automorphism group

the example is unique. The special element

ζ � �1 2��3 4��5 6��7 8��9 10��11 12��13 14��15 16�
acts on M without fixed points. It interchanges the endpoints of each diagonal

and, therefore, can be regarded as the antipodal mapping sending each vertex of

the 8-dimensional cross polytope to its antipodal vertex in such a way that it is

compatible with the subcomplex M .

A normal subgroup H isomorphic to C2 �C2 �C2 �C2 acts simply transitively

on the 16 vertices. The isotropy group G0 fixing one vertex (and, simultaneously,

its antipodal vertex) is isomorphic to the dihedral group of order 8.

The group itself is a semi-direct product between H and G0. In more detail the

example is given by the three G-orbits of the 4-simplices

`1 3 5 7 9e128, `1 3 5 9 13e64, `1 3 5 7 15e32

with altogether 128� 64� 32 � 224 simplices, each given by a 5-tuple of vertices out

of �1,2,3, . . . ,15,16�.

The group G � ����C4 �C2� #C2� #C2� #C2� #C2 of order 128 is generated by

the three permutations

α � �1 12 16 14 2 11 15 13��3 10 6 8 4 9 5 7�,
β � �1 6 2 5��7 9 2 14��8 10 11 13��15 16�,
γ � �1 12 3 14��2 11 4 13��5 7 16 10��6 8 15 9�.

The complete list of all 224 top-dimensional simplices of M is contained in

Section B.1 on page 135.

The link of the vertex 16 is the following simplicial 3 sphere with 70 tetrahedra:
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4.2. 2-Hamiltonian 4-manifolds in cross polytopes

`1369e, `13610e, `13810e, `13811e, `13911e, `14511e, `14512e, `141012e,
`141013e,`141113e,`151012e,`151014e,`151114e,`16710e, `16711e, `16911e,
`171014e,`171114e,`181013e,`181113e,`23513e, `23514e, `23811e, `23814e,
`231113e,`2467e, `2468e, `24713e, `24810e, `241013e, `25812e, `25814e,
`251213e,`26713e, `2689e, `26913e, `28912e, `281011e, `291213e,`2101113e,
`35712e, `35714e, `351213e,`36710e, `36712e, `36912e, `371014e,`381014e,
`391113e,`391213e,`45912e, `45914e, `451114e,`46714e, `4689e, `46914e,
`471113e,`471114e,`48912e, `481012e,`57912e, `57914e, `581012e,`581014e,
`671113e,`671214e,`691113e,`691214e,`791214e,`8101113e.

It remains to prove two facts:

Claim 1. The link of the vertex 16 is a combinatorial 3-sphere. This implies

that M is a PL-manifold since all vertices are equivalent under the action of the

automorphism group.

A computer algorithm gave a positive answer: the link of the vertex 16 is

combinatorially equivalent to the boundary of a 4-simplex by bistellar moves. This

method is described in [22] and [90, 1.3].

Claim 2. The intersection form of M is even or, equivalently, the second Stiefel-

Whitney class ofM vanishes. This implies thatM is homeomorphic to the connected

sum of 7 copies of S2 � S2.

There is an algorithm for calculating the second Stiefel-Whitney class [53]. There

are also computer algorithms implemented in simpcomp [44, 45] and polymake [52],

compare [65] for determining the intersection form itself. The latter algorithm gave

the following answer: The intersection form of M is even, and the signature is

zero. j

In order to illustrate the intersection form on the second homology we consider

the link of the vertex 16, as given above. By the tightness condition special homology

classes are represented by the empty tetrahedra c1 � `7 10 11 16e and d1 � `8 12 13 16e
which are interchanged by the element

δ � �1 2��5 6��7 12��8 11��9 14��10 13�
of the automorphism group. The intersection number of these two equals the linking

number of the empty triangles `7 10 11e and `8 12 13e in the link of 16. The two

subsets in the link spanned by 1, 5, 7, 10, 11, 14 and 2, 6, 8, 9, 12, 13, respectively, are
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Chapter 4. Hamiltonian submanifolds of cross polytopes

homotopy circles interchanged by δ. The intermediate subset of points in the link

of 16 which is invariant under δ is the torus depicted in Figure 4.3 on page 89. The

set of points which are fixed by δ are represented as the horizontal �1,1�-curve in

this torus, the element δ itself appears as the reflection along that fixed curve. This

torus shrinks down to the homotopy circle on either of the sides which are spanned

by 1,5,7,10,11,14 and 2,6,8,9,12,13, respectively.

The empty triangles `7 10 11e and `8 12 13e also represent the same homotopy

circles. Since the link is a 3-sphere these two are linked with linking number �1. As

a result we get for the intersection form c1 � d1 � �1. These two empty tetrahedra c1

and d1 are not homologous to each other in M . Each one can be perturbed into

a disjoint position such that the self linking number is zero: c1 � c1 � d1 � d1 � 0.

Therefore c1, d1 represent a part of the intersection form isomorphic with ��0 1
1 0

�.
This situation is transferred to the intersection form of other generators by the

automorphism group. As a result we have seven copies of the matrix as a direct

sum.

In the homology H��M,Z� � �Z,0,Z14,0,Z� of �S2 � S2�#7 we expect to see 14

generators of H2�M�. In order to visualize M a little bit one can try to visualize

the collection of 14 generating homology 2-cycles, even if the intersection form of

the manifold cannot be directly derived. These cycles were computed using the

computer software polymake and are listed in Table 4.3 on the facing page.

One observes that the cycles c5 and c7 intersect precisely in the disc D shown

in Figure 4.2 on page 88 (top left) and that every other cycle has a non-empty

intersection with D, sharing at least one edge with D. Thus, we refer to D as the

universal disc. In Figure 4.2 on page 88 the cycles c1 to c14 are visualized via their

intersection with the universal disc D. In each figure the 1-skeleton of D is shown

in form of thin gray lines, the edges shared by D and ci are shown in green and

the edges in the difference ci�D are shown in blue.

4.5 Remark Looking at the action of the automorphism group G on the free

abelian group H2�M,Z� � Z14 we get on the 17 conjugacy classes of G the following
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4.2. 2-Hamiltonian 4-manifolds in cross polytopes

Table 4.3: The 14 homology 2-cycles of M .

cycle ci oriented triangles of ci

c1 �`3 7 13e �`3 7 16e �`3 10 12e �`3 10 15e �`3 12 16e + `3 13 15e

�`7 13 16e �`10 12 15e�`12 13 15e�`12 13 16e

c2 �`3 12 14e �`3 12 16e �`3 14 16e �`8 12 14e �`8 12 16e + `8 14 16e

c3 �`10 12 13e�`10 12 15e�`10 13 15e�`12 13 15e

c4 �`5 9 11e �`5 9 16e �`5 11 15e �`5 13 15e �`5 13 16e - `9 11 15e

�`9 13 15e �`9 13 16e

c5 �`4 8 14e �`4 8 15e �`4 9 11e �`4 9 16e �`4 11 15e + `4 14 16e

�`8 12 15e �`8 12 16e �`8 14 16e �`9 11 15e + `9 13 15e �`9 13 16e

�`12 13 15e�`12 13 16e

c6 �`6 10 12e �`6 10 15e �`6 12 15e �`10 12 15e

c7 �`4 7 11e �`4 7 16e �`4 8 14e �`4 8 15e �`4 11 15e - `4 14 16e

�`7 11 13e �`7 13 16e �`8 12 15e �`8 12 16e + `8 14 16e �`9 11 13e

�`9 11 15e �`9 13 15e �`12 13 15e�`12 13 16e

c8 �`2 8 10e �`2 8 13e �`2 10 15e �`2 13 15e �`8 10 12e + `8 12 15e

�`8 13 15e �`10 12 15e

c9 �`8 9 14e �`8 9 16e �`8 14 16e �`9 14 16e

c10 �`3 12 14e �`3 12 16e �`3 14 16e �`4 8 14e �`4 8 15e + `4 10 14e

�`4 10 15e �`8 12 15e �`8 12 16e �`8 14 16e + `10 12 14e�`10 12 15e

c11 �`7 9 13e �`7 9 16e �`7 13 16e �`9 13 16e

c12 �`9 11 13e �`9 11 15e �`9 13 15e �`11 13 15e

c13 �`2 8 10e �`2 8 13e �`2 10 15e �`2 13 15e �`8 10 15e - `8 13 15e

c14 �`3 12 14e �`3 12 16e �`3 14 16e �`12 14 16e
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Figure 4.2: Visualization of the 14 homology 2-cycles c1, . . . , c14 of M (from top to
bottom, left to right) via the universal disc D shown in the top left.

88



4.2. 2-Hamiltonian 4-manifolds in cross polytopes

7
9

5
13

10
13

11
8

1
8

1
13

7
13

11
9

1
6

1
9

5
8

10
12

11
13

1
13

10
13

11
13

10
2

10
8

11
2

7
2

10
6

7
6

14
614

12

7
12

14
9

5
9

14
8

14
2

5
2

5
12

1
12

10
2

10
8

10
13

10
13

11
6

43

Figure 4.3: The intermediate torus in the link of the vertex 16, invariant under the
reflection δ.
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Chapter 4. Hamiltonian submanifolds of cross polytopes

character values

�14,�2,�2,�2,2,�2,6,�2,�2,�2,6,0,0,0,0,0,0�.
Denote by χ the corresponding ordinary character. Using the character table2 of G

given by GAP [51] and the orthogonality relations this character decomposes into a

sum of five irreducible ordinary characters as follows

χ � χ2 � χ3 � χ13 � χ14 � χ17

This shows that CaZ H2�M,Z� is a cyclic CG - module. It may be interesting to

find a geometric explanation for this. The involved irreducible characters are as

follows:

1a 2a 2b 2c 4a 2d 2e 4b 4c 4d 2f 4e 4f 4g 4h 8a 2g

χ2 1 �1 1 �1 1 1 1 �1 1 �1 1 �1 1 �1 1 �1 1

χ3 1 �1 1 �1 1 1 1 �1 1 �1 1 1 �1 1 �1 1 �1

χ13 2 . �2 . . 2 2 . �2 . 2 �2 . 2 . . .

χ14 2 . �2 . . 2 2 . �2 . 2 2 . �2 . . .

χ17 8 . . . . �8 . . . . . . . . . . .

4.6 Remark There is a real chance to solve the next regular case d � 10 in Sparla’s

inequality. The question is whether there is a 2-Hamiltonian 4-manifold of genus

21 (i.e. χ � 44) in the 10-dimensional cross polytope.

A 22-vertex triangulation of a manifold with exactly the same genus as a subcom-

plex of the 11-dimensional cross polytope does exist. If one could save two antipodal

vertices by successive bistellar flips one would have a solution.

The example with 22 vertices is defined by the orbits (of length 110 and 22,

respectively) of the 4-simplices

`1 3 5 7 18e110, `1 3 5 7 21e110, `1 3 5 8 18e110,

`1 3 5 8 21e110, `1 3 7 18 20e110, `1 3 6 10 15e22

2We would like to thank Wolfgang Kimmerle for helpful comments concerning group representa-
tions.
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4.2. 2-Hamiltonian 4-manifolds in cross polytopes

under the permutation group of order 110 which is generated by

�1 16 7 22 13 5 19 12 3 18 10 2 15 8 21 14 6 20 11 4 17 9�
and

�1 11 17 3 21��2 12 18 4 22��5 9 8 20 14��6 10 7 19 13�.
The central involution is

�1 2��3 4��5 6��7 8��9 10��11 12��13 14��15 16��17 18��19 20��21 22�
which corresponds to the antipodal mapping in a suitably labeled cross polytope. The

f-vector of the example is �22,220,1100,1430,572�, and the middle homology is

42-dimensional, the first and third homology both vanish. Hence it has “genus” 21

in the sense defined above.

Corollary 4.7

There is a tight and PL-taut simplicial embedding of the connected sum of 7 copies

of S2 � S2 into Euclidean 8-space.

This follows directly from Theorem 4.4 on page 82: The induced polyhedral

embedding M ` β8 ` E8 into E8 via the 8-dimensional cross polytope is tight

since the intersection with any open half-space is connected and simply connected.

No smooth tight embedding of this manifold into 8-space can exist, see [136].

Consequently, this embedding of M into 8-space is smoothable as far as the PL

structure is concerned but it is not tightly smoothable.

In addition this example is centrally-symmetric. There is a standard construction

of tight embeddings of connected sums of copies of S2 � S2 but this works in

codimension 2 only, polyhedrally as well as smoothly, see [14, p.101].

The cubical examples in [85] exist in arbitrary codimension but they require a

much larger “genus”: For a 2-Hamiltonian 4-manifold in the 8-dimensional cube

one needs an Euler characteristic χ � 64 which corresponds to a connected sum of

31 copies of S2 � S2.
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Chapter 4. Hamiltonian submanifolds of cross polytopes

The number of summands in this case grows exponentially with the dimension

of the cube. For a 2-Hamiltonian 4-manifold in the 8-dimensional simplex an Euler

characteristic χ � 3 is sufficient. It is realized by the 9-vertex triangulation of CP 2

[81], [82]. One copy of S2�S2 cannot be a subcomplex of the 9-dimensional simplex

because such a 3-neighborly 10-vertex triangulation does not exist [82] even though

it is one of the “regular cases” in the sense of the Heawood type integer condition

in Section 1.6 on page 26. In general the idea behind is the following: A given

d-dimensional polytope requires a certain minimum “genus” of a 2k-manifold to

cover the full k-dimensional skeleton of the polytope. For the standard polytopes

like simplex, d-cube and d-cross polytope we have formulas for the “genus” which

is to be expected but we don’t yet have examples in all of the cases.

The situation is similar with respect to the concept of tightness: For any given

dimension d of an ambient space a certain “genus” of a manifold is required

for admitting a tight and substantial embedding into d-dimensional space. This

is well understood in the case of 2-dimensional surfaces [78]. For “most” of the

simply connected 4-manifolds a tight polyhedral embedding was constructed in [80],

without any especially intended restriction concerning the essential codimension.

The optimal bounds in this case and in all the other higher-dimensional cases still

have to be investigated.

4.3 Subcomplexes with stacked vertex links

In this section we will investigate the relation of the cross polytope and its Hamil-

tonian submanifolds to the class Kk�d� of Section 3.4 on page 67.

The boundary of the �d � 1�-cross polytope βd�1 is an obviously minimally d-

stacked d-sphere as it can be obtained as the boundary of a minimally d-stacked

�d � 1�-ball that is given by any subdivision of βd�1 along an inner diagonal.

Corollary 4.8

The 16-vertex triangulation of �S2 � S2�#7
16 presented in [43] lies in K2�4� and

admits a tight embedding into β8 as shown in [43].
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4.3. Subcomplexes with stacked vertex links

Proof. The triangulation �S2 � S2�#7
16 is a combinatorial manifold and a tight

subcomplex of β8 as shown in [43]. Thus, each vertex link is a PL 3-sphere. It

remains to show that all vertex links are 2-stacked.

Using the software system simpcomp [44, 45], we found that the vertex links can

be obtained from the boundary of a 4-simplex by a sequence of 0- and 1-moves.

Therefore, by Lemma 3.17 on page 68, the vertex links are 2-stacked 3-spheres.

Thus, �S2 � S2�#7
16 > K2�4�, as claimed. j

The following centrally symmetric triangulation of S4 � S2 is a new example of

a triangulation that can be seen as a subcomplex of a higher dimensional cross

polytope.

Theorem 4.9

There exists an example of a centrally symmetric triangulation M6
16 of S4 �S2 with

16 vertices that is a 2-Hamiltonian subcomplex of the 8-cross polytope β8 and that

lies in K2�6�.

Proof. The construction of M6
16 was done entirely with simpcomp [44, 45] and is

as follows. First a 24-vertex triangulation M̃6 of S4 � S2 was constructed as the

standard simplicial cartesian product of ∂∆3 and ∂∆5 as implemented in [44],

where ∆d denotes the d-simplex. Then M̃6 obviously is a combinatorial 6-manifold

homeomorphic to S4 � S2.

This triangulation M̃6 was then reduced to the triangulation M6
16 with f -vector

f � �16,112,448,980,1232,840,240� using a vertex reduction algorithm based on

bistellar flips that is implemented in [44]. The code is based on the vertex reduction

methods developed by Björner and Lutz [22]. It is well-known that this reduction

process leaves the PL type of the triangulation invariant so that M6
16 � S

4 � S2.

The 240 5-simplices of M6
16 are given in Section B.2 on page 136. The f -vector of

M6
16 is uniquely determined already by the condition of M6

16 to be 2-Hamiltonian

in the 8-dimensional cross polytope. In particular, M6
16 has 8 missing edges of the

form `i, i � 1e for all odd 1 B i B 15, which are pairwise disjoint and correspond to

the 8 diagonals of the cross polytope. As there is an involution

I � �1,2��3,4��5,6��7,8��9,10��11,12��13,14��15,16�
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Chapter 4. Hamiltonian submanifolds of cross polytopes

operating on the faces of M6
16 without fixed points, M2 can be seen as a 2-

Hamiltonian subcomplex of β8.

It remains to show that M6
16 > K

2�6�. Remember that the necessary and sufficient

condition for a triangulation X to lie in Kk�d� is that all vertex links of X are

k-stacked �d � 1�-spheres. Since M6
16 is a combinatorial 6-manifold, all vertex links

are triangulated 5-spheres. It thus suffices to show that all vertex links are 2-stacked.

Using simpcomp, we found that the vertex links can be obtained from the boundary

of the 6-simplex by a sequence of 0- and 1-moves. Therefore, by Lemma 3.17 on

page 68, vertex links are 2-stacked 5-spheres. Thus, M6
16 > K

2�6�, as

The triangulation M6
16 is strongly conjectured to be tight in β8. It is part of

a conjectured series of centrally symmetric triangulations of sphere products as

Hamiltonian subcomplexes of the cross polytope that can be tightly embedded into

the cross polytope (see [126], [84, 6.2] and [43, Sect. 6]). In particular the sphere

products presented in [84, Thm. 6.3] are part of this conjectured series and the

following theorem holds.

Theorem 4.10

The centrally symmetric triangulations of sphere products of the form Sk �Sm with

vertex transitive automorphism group

S1 � S1, S2 � S1, S3 � S1, S4 � S1, S5 � S1, S6 � S1, S7 � S1,

S2 � S2, S3 � S2, S5 � S2,

S3 � S3, S4 � S3, S5 � S3,

S4 � S4

on n � 2�k �m� � 4 vertices presented in [84, Theorem 6.3] are all contained in the

class Kmin�k,m��k �m�.

Using simpcomp, we found that the vertex links of all the manifolds mentioned

in the statement can be obtained from the boundary of a �k �m�-simplex by

sequences of bistellar i-moves, 0 B i B min�k, l� � 1. Therefore, by Lemma 3.17 on

page 68, the vertex links are min�k,m�-stacked �k �m � 1�-spheres. Thus all the

manifolds mentioned in the statement are in Kmin�k,m��k �m�. Note that since
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4.3. Subcomplexes with stacked vertex links

these examples all have a transitive automorphism group, it suffices to check the

stackedness condition for one vertex link only.

The preceding observations naturally lead to the following Question 4.11 as a

generalization of Question 3.19 on page 69. Remember that a combinatorial manifold

that is �k � 1�-neighborly (see Question 3.19) is a k-Hamiltonian subcomplex

of a higher dimensional simplex. The following seems to hold for Hamiltonian

subcomplexes of cross polytopes in general.

Question 4.11 Let d C 4 and let M be a k-Hamiltonian codimension 2 subcomplex

of the �d � 2�-dimensional cross polytope βd�2, such that M > Kk�d� for some fixed

1 B k B �d�1
2 �. Does this imply that the embedding M ` βd�2 ` Ed�2 is tight?

This is true for all currently known codimension 2 subcomplexes of cross polytopes

that fulfill the prerequisites of Question 4.11: The 8-vertex triangulation of the torus,

a 12-vertex triangulation of S2 � S2 due to Sparla [88, 124] and the triangulations

of Sk � Sk on 4k � 4 vertices for k � 3 and k � 4 as well as for the infinite series of

triangulations of Sk � S1 in [74]. For the other triangulations of Sk � Sm listed in

Theorem 4.10 on the preceding page, Kühnel and Lutz “strongly conjecture” [84,

Sec. 6] that they are tight in the �k�m�2�-dimensional cross polytope. Nevertheless

it is currently not clear whether the conditions of Question 4.11 imply the tightness

of the embedding into the cross polytope.

In accordance with [84, Conjecture 6.2] we then have the following

Conjecture 4.12

Any centrally symmetric combinatorial triangulation of Sk �Sm on n � 2�k�m�2�
vertices is tight if regarded as a subcomplex of the n

2 -dimensional cross polytope.

The triangulation is contained in the class Kmin�k,m��k �m�.
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Centrally symmetric triangulations of

sphere products

As far as the integer conditions of the “regular cases” in the generalized Heawood

inequalities are concerned, it seems to be plausible to ask for centrally-symmetric

triangulations of any sphere product Sk � Sl with a minimum number of

n � 2�k � l � 2�
vertices, see Section 4.3 on page 92. In this case each instance can be regarded as a

codimension-1-subcomplex of the boundary complex of the �k � l � 2�-dimensional

cross polytope, and it can be expected to be m-Hamiltonian withm � min�k, l�. This

can be understood as a kind of simplicial Hopf decomposition of the �k�l�1�-sphere

by “Clifford-tori” of type Sk � Sl.

For vertex numbers n B 20 (i.e., for k � l B 8) a census of such triangulations with

a vertex-transitive automorphism group can be found in [90], compare [84] and

Theorem 4.10 on page 94. Here all cases occur except for S4 � S2 and S6 � S2, and

all examples admit a dihedral group action of order 2n. There exists a triangulation

of S4 � S2 with non-transitive automorphism group in this series, see Theorem 4.9

on page 93, whereas the case of S6 � S2 remains to be found. An infinite series of

examples so far seems to be known only for l � 1 and arbitrary k. This series due

to Kühnel is presented in Section 5.2 on page 102 of this chapter.
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In Section 5.3 on page 104 we will present a construction principle that is

conjectured to yield a series of centrally symmetric triangulations of Sk�1 � Sk�1

as �k � 1�-Hamiltonian submanifolds of β2k. Before coming to the description of

the construction principle, important concepts needed for the construction are

discussed, namely cyclic automorphism groups and difference cycles.

5.1 Cyclic automorphism groups and difference cycles

Cyclic automorphism groups play an important role for many combinatorial struc-

tures. In this setting, the elements (or in our case: vertices) of a combinatorial object

are regarded as elements of Zn for some n > N and the combinatorial structure

consists of a set of tuples over Zn which is invariant under the Zn-action x( x � 1

mod n.

Such structures appear for example in the form of cyclic block designs or cyclic

Steiner triple systems in the theory of combinatorial designs, see [20]. Triangulated

surfaces with cyclic automorphism group played a crucial role in the proof of the

Heawood map color theorem [59, 114], see Section 1.6 on page 26. In the field of

polytope theory, cyclic polytopes (which have component-wise maximal f -vector

among all polytopes of the same dimension and vertex number) with a cyclic

symmetry group appear in the proof of the Upper Bound Theorem, see Chapter 1

on page 1.

If the vertices of a combinatorial manifold M on n vertices are identified with

elements of Zn, then —up to the Zn action x ( x � 1 mod n— an edge `v0 v1e
of M can be encoded by the tuple of differences �v1 � v0, n � v1 � v0� � �d,n � d�,
where d > Zn is a non-zero element. Likewise, any k-simplex `v0 . . . vke of M with

v0 @ v1 @ � � � @ vk can be encoded by the tuple of differences �d1, . . . , dk� with

non-zero elements di > Zn.

Definition 5.1 (difference sequences and cycles, cf. [20]) Let B ` Zn with

B � �b1, . . . , bk� and assume the representatives to be chosen such that

0 B b1 @ � � � @ bk @ n.
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5.1. Cyclic automorphism groups and difference cycles

Then the k-difference sequence δB of B is the k-tuple

δB �� �d1, . . . , dk� � �b2 � b1, . . . , bk � bk�1, n � b1 � bk�
and the k-difference cycle ∂B of B is the equivalence class of δB under cyclic

permutations. We denote ∂B by

�d1 � � � � � dk� � �d2 � � � � � dk � d1� � � � � � �dk � d1 � � � � � dk�1�.
Furthermore, given a difference sequence δB, we will refer to the set of simplices

�dx x � d1 . . . x �
k

Q
i�1

dii � x > Zn¡
as realization of δB. Two difference sequences are called equivalent if their realiza-

tions are equal as sets. Two difference cycles are called equivalent, if there exist

two representatives that are equivalent.

In the following we will drop the prefix k most of the time, just speaking of

difference sequences and difference cycles, when actually meaning k-difference

sequences and k-difference cycles.

Obviously, for any difference sequence δB we have 0 @ di @ n and Pki�1 di � n. Note

also that, given a k-tuple �d1, . . . , dk� that satisfies the properties of Definition 5.1,

the set B �� �0, d1, d1 � d2, . . . , d1 � � � � � dk�1� satisfies δB � �d1, . . . , dk�. For any

k-element subset B ` Zn and for any x > Zn we have ∂B � ∂�B � x�.
Kühnel and Gunter Lassmann [83] extended the notion of a difference cycle of

order k to a permuted difference k-cycle as a difference k-cycle �dσ�1� � � � � � dσ�k��
for a given permutation σ > Sk and furthermore defined a k-permcycle as the set of

permuted difference k-cycles where σ ranges over all possible permutations in the

symmetric group Sk.

We can define a natural multiplication on the set of difference cycles that is

induced by the multiplication in Zn. Note that we assume a more general definition

of the term difference sequence and cycle below, namely relaxing the prerequisite

that Pki�1 di � n for δB � �d1, . . . , dk� to Pki�1 di � 0 mod n. We will refer to such
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Chapter 5. Centrally symmetric triangulations of sphere products

difference sequences and cycles as generalized difference sequences and generalized

difference cycles, respectively.

Definition 5.2 (multiplication for generalized difference cycles) Let ∂B be

a difference cycle and δB a representative of ∂B. Then a multiplication � can be

defined via the mapping

� � Zn
�

� �Zn��0��k � �Zn��0��k
�x , �d1, . . . , dk�� ( �xd1, . . . , xdk� .

This mapping induces a multiplication on the set of generalized difference cycles.

An element m > Zn for which ∂�m � δB� � ∂B usually is referred to as multiplier of

∂B (and 1 > Zn obviously is a multiplier for any ∂B).

We now show that the multiplication of Definition 5.2 is well-defined even for

ordinary difference cycles. Note that for a difference cycle C withP ci � n its multiple

D � xC obviously satisfies Pdi � 0 mod n, but Pdi � n does not necessarily hold.

Definition 5.3 (minimal difference sequences and cycles) Given any gen-

eralized difference sequence δB � �b1, . . . , bk� over Zn, there exists a difference

sequence δB̂ � �b̂1, . . . , b̂k� that is equivalent to δB and for which Pki�1 b̂i � n holds.

δB̂ is called the minimal representation of δB. Analogously, for any given difference

cycle ∂B there exists a minimal representation ∂B̂.

Using the following algorithm, a minimal representation for an arbitrary difference

sequence or cycle can be obtained.

Lemma 5.4 (minimal representation of difference cycles) Let δB � �b1, . . . ,
bk� be a difference sequence over Zn with Pki�1 bi � 0 mod n. Then the minimal

representation of δB can be obtained with the following iterative construction.

(i) If Pki�1 bi � n, δB is a minimal representation. The iteration stops here.

Otherwise continue to (ii).

(ii) Determine a minimal j such that Pji�1 bi A n and replace bj by b̃j �� P
j
i�1 bi

mod n �Pj�1
i�1 bi.
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(iii) If δB contains negative entries, then substitute any triple of successive values

a,�b, c with b A 0 in B with the triple a� b, b, c� b and iterate this process until

there are no more negative entries in δB. Then continue with (i).

The process terminates, as in every iteration at least two entries of the cycle are

reduced in magnitude.

The algorithm presented above obviously constructs a minimal representation of

any difference cycle after a finite number of steps. Let us give an example of how

to obtain a minimal representation of a difference cycle with the construction of

Lemma 5.4.

Take n � 12 and δB � �1,1,1,1,8�, x � 5. Then δB̃ � xδB � �5,5,5,5,4�. B̃ is

obviously not a minimal representation, as P5
i�1 b̃i � 24 A 12. We now apply the

algorithm of Lemma 5.4. In the first iteration in step (ii), j � 3. We thus get a

new difference sequence �5,5,�7,5,4� which in step (iii) is first replaced by the

difference sequence �5,�2,7,�2,4�, which in turn is replaced by �3,2,3,2,2�. This

last difference sequence δB̂ � �3,2,3,2,2� is a minimal representation of δB, as

P5
i�1 b̂i � 12.

We will assume that a difference sequence or cycle is given in its minimal

representation from now on unless stated otherwise.

An easy calculation (cf. [128, Prop. 1.5]) lets us prove the following lemma.

Lemma 5.5 (length of difference cycles, [128]) Let ∂D � �d1 � � � dk� be a

k-difference cycle over Zn and let 1 B j B k be the smallest integer such that jSk and

di � di�j for all 1 B i B k � j. Then the length of the realization of any representative

δD of ∂D is

L�∂D� �� j

Q
i�1

di �
jn

k
.

If j � k, i.e. L�∂D� � n, we say that ∂D is of full length.

Proof. Let σ > Cn be the cycle σ � �0 . . . n � 1� jn
k that operates on Zn. We then

have
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σ d0, d1, . . . ,
k

Q
i�1

dii � djn
k
, d1 �

jn

k
, . . . ,

k

Q
i�1

di �
jn

k
i

� d j

Q
i�1

di,
j�1

Q
i�1

di, . . . ,
k

Q
i�1

di � 0, d1, . . . ,
j�1

Q
i�1

dii
� d0, d1, . . . ,

k

Q
i�1

dii
,

and thus L�∂D� B jn
k . As on the other hand j is minimal with jSk and di � di�j for

all 1 B i B k � j, L�∂D� C jn
k , which proves the statement. j

5.2 A centrally-symmetric Sk � S1 in ∂βk�3

The following series of triangulations is due to Kühnel and Lassmann [83].

Theorem 5.6 (A centrally-symmetric Sk
�S1 in ∂βk�3)

There is a centrally-symmetric triangulation of Sk �S1 with n � 2k � 6 vertices and

with a dihedral automorphism group of order 2n. Its induced embedding into the

�k � 3�-dimensional cross polytope is tight and PL-taut.

The construction of the triangulations is given in [83] (the triangulations are

called Mk�1
k �n� there and represented as the permcycle �1k2�). It is as follows:

Regard the vertices as integers modulo n and consider the Zn-orbit of the �k�2�-
simplex

`0, 1, 2, � , k, �k � 1�, �k � 2�e.
This is a manifold with boundary (just an ordinary orientable 1-handle), and its

boundary is homeomorphic to Sk � S1. All these simplices are facets of the cross

polytope of dimension k � 3 if we choose the labeling such that the diagonals are

`x,x � k � 3e, x > Zn. These diagonals do not occur in the triangulation of the

manifold, but all other edges are contained. Therefore we obtain a 1-Hamiltonian

subcomplex of the �k � 3�-dimensional cross polytope. The central symmetry is the

shift x( x � k � 3 in Zn. These triangulated manifolds Mk�1 are hypersurfaces in
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∂βk�3 and decompose this �k � 2�-sphere into two parts with the same topology as

suggested by the Hopf decomposition.

The same generating simplex for the group Zm with m � 2k � 5 vertices leads to

the minimum vertex triangulation of Sk � S1 (for odd k) or to the twisted product

(for even k) which is actually unique [9], [33]. For any k C 2 it realizes the minimum

number of vertices for any manifold of the same dimension which is not simply

connected [27]. Other infinite series of triangulated sphere bundles over tori are

given in [83]. Let us now come to the proof of Theorem 5.6 on the preceding page.

Proof (of Theorem 5.6). Define n �� 2d � 3 and Nd�1 as the representation of the

difference cycle �1 � 1 � � � � � 1 � d � 1� over Zn. Then Nd�1 is a �d � 1�-dimensional

manifold with boundary and more specific a stacked �d � 1�-polytope with two

disjoint facets identified. Thus, Nd�1 is PL-homeomorphic to a 1-handle which is

orientable if d is even and non-orientable if d is odd. The boundary Md �� ∂Nd�1

of Nd�1 lies in Walkup’s class H�d�. Using the classification of sphere bundles from

[134] we can deduce that Md is PL-homeomorphic to S1 � Sd�1 if d is even and to

the total space of Sd�1 " S1, the twisted Sd�1-bundle over S1, if d is odd.

It remains to show that Md and Nd�1 are tight triangulations. First, note that

both triangulations are 2-neighborly. For d C 4, Md and Nd�1 lie in Walkup’s

class H�d� � K�d� and thus by Theorem 3.5 on page 59, Md and Nd�1 are tight

triangulations in this case. We will continue with an elementary proof of the

tightness of Md and Nd�1 that also works for d @ 4.

Note that Nd�1 has the homotopy type of S1 and that the generator of π1�Nd�1�
may be chosen as the union of all edges `i, i � 1e, 0 B i B 2d � 2. We will now show

that for any subset X ` V �Nd�1� the span of X in Nd�1 is either contractible or

homotopy equivalent to Nd�1. There are two cases that can be distinguished: (i) if

X is contained in a �d�2�-tuple of subsequent vertices of Nd�1 (i.e. a face of Nd�1),

then X is clearly contractible, and (ii) if X is not contained in any �d � 2�-tuple of

subsequent vertices, then span�X� collapses onto a union of three edges `v1, v2e,
`v2, v3e, `v3, v1e where any two of the three vertices lie in a common �d� 2�-tuple of

subsequent vertices. It now follows that the union of these three edges is homotopy

equivalent to the generator of π1�Nd�1�.
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Altogether it follows that Nd�1 is a tight triangulation. It can be shown (see

[78, Prop. 6.5]) that for a tight triangulation M with Pβi�∂M� � 2Pβi�M�, the

boundary ∂M is also tight. Thus, the tightness of Md follows from the tightness of

Nd�1 as Pβi�Md; Z2� � 4 � 2Pβi�Nd�1; Z2�. Note that this relation does not hold

for d � 1: N2 is the tight 5-vertex Möbius band, but its boundary is not tight. j

All triangulations Md above have the minimal number of vertices among all

triangulated d-manifolds which are not simply connected, [78, Prop. 5.7].

5.3 A conjectured series of triangulations of Sk�1
�Sk�1

This section contains the description of a conjectured generalization of Theorem 5.6

on page 102 with an analogous infinite series of triangulations Sk�1 � Sk�1 as

�k � 1�-Hamiltonian subcomplexes of ∂β2k for k C 2 with dihedral and vertex

transitive automorphism group. Furthermore, it is not impossible that also infinite

series of analogous triangulations of Sk � S3, Sk � S5, . . . exist as Hamiltonian

subcomplexes of a cross polytope, at least for odd k and again each with a dihedral

and vertex-transitive group action. Note though, that the latter cases have not

been investigated in the course of this work.

The existence of a �k � 1�-Hamiltonian Sk�1 � Sk�1 with n � 4k vertices and

d � 2k would give a positive answer to a conjecture by Lutz [90, p.85], and it would

additionally realize equality in Sparla’s inequality in Section 4.1 on page 77 for any

k since

��1�k�1 1

2
�χ�Sk�1

� Sk�1� � 2� � 1 �
2k � 1

1
�
2k � 3

3
�
2k � 5

5
� � �

1

2k � 1
.

The following inductive construction seems to yield exactly the desired triangula-

tions of Sk�1�Sk�1 as �k�1�-Hamiltonian subcomplexes of ∂β2k, but unfortunately

we did not succeed in actually proving this result – so far the first cases could only

be verified by hand and by computer up to k � 12, see Table A.4 on page 133 for

some conjectured properties of the triangulations in the series.

The first two triangulations in the conjectured series, M2 and M4, are Altshuler’s

unique 8-vertex triangulation of the torus with fixed point free involution and one
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of the three types of Sparla’s 12-vertex triangulations of S2 � S2, respectively – see

[126].

5.3.1 �k � 1�-Hamiltonian �2k � 2�-submanifolds of β2k

Before describing the construction principle let us investigate on the f -vectors of

�k � 1�-Hamiltonian �2k � 2�-subcomplexes of the 2k-cross polytope. By virtue

of the Dehn-Sommerville equations (see Section 1.3 on page 20), the f -vector of

such complexes is completely determined by its first �k � 1� entries. As a �k � 1�-
Hamiltonian submanifold M of β2k satisfies

fi�M� � 2i�1� 2k

i � 1
� for i B k � 1,

using the Dehn-Sommerville equations for triangulated manifolds (see [56, Sect. 9.5])

we get for the number of facets of M :

f2k�2�M� � ��1�k�1�2k � 2

k � 1
�χ�M� � 2

k�2

Q
i�0

��1�k�i�2k � i � 3

k � 1
�fi�M�

� ��1�k�1�2k � 2

k � 1
�χ�M� � k�2

Q
i�0

��1�k�i�2k � i � 3

k � 1
�� 2k

i � 1
�2i�2.

(5.1)

We will simplify the expression above. The following lemmata will prove helpful

in for this.

Lemma 5.7 (R. Adin [1]) Let K be a �d � 1�-dimensional simplicial complex

and let M be a �k � 1�-Hamiltonian subcomplex of K. Then

hM�q� � trunck � hK�q��1 � q�d�k� ,
where the k-truncation of a power-series is defined as

trunck �ª

Q
i�0

aiq
i� �� k

Q
i�0

aiq
i.
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As this lemma that can be found in Ron Adin’s PhD thesis [1, Lemma 1.5] does

not seem to be published in one of his papers, the proof is reproduced along the

following lines.

Proof. We will write fi � fi�K� in the following. Note that fi�K� � fi�M� for

i B k � 1. By definition of the h-polynomial we have

hK�q� � d

Q
i�0

fi�1q
i�1 � q�d�i and hM�q� � k

Q
i�0

fi�1q
i�1 � q�k�i.

It follows that

hK�q��1 � q�d�k � hM�q� � d

Q
i�k�1

fi�1q
i�1 � q�k�i

� qk�1
d�k�1

Q
j�0

fj�kq
j�1 � q��j�1

is a power series in q for which the coefficients of 1, q, . . . , qk all vanish. j

In particular, this means that the first k � 1 entries of the h-vector of a k-

Hamiltonian subcomplex M of some simplicial polytope P can be computed from

the h-vector of P . More precisely we have for 0 B i B k:

hi�M� � i

Q
j�0

hj�P �.
This allows us to prove the following lemma.

Lemma 5.8 Let M be a �k � 1�-Hamiltonian �2k � 2�-submanifold of β2k. Then

χ�M� � χ�Sk�1
� Sk�1� � 2 � 2��1�k�1

�

¢̈̈̈
¦̈̈̈
¤

0 for even k

4 for odd k
. (5.2)

Proof. As hi�β2k� � �2k
i
� and M is �k�1�-Hamiltonian in β2k, we have by Lemma 5.7

on the previous page:

hi�M� � i

Q
j�0

�2k

j
�, for 0 B i B k. (5.3)
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Furthermore, we have the Dehn-Sommerville equations for combinatorial �d � 1�-
manifolds with d � 2k � 1:

hj � hd�j � ��1�d�j�d
j
��χ�M� � 2�, for 0 B j B k � 1. (5.4)

By virtue of the Dehn-Sommerville equations (5.4) we obtain

hk�M� � hk�1�M� � ��1�k�1�2k � 1

k
��χ�M� � 2�,

on the one hand, whereas using (5.3) on the preceding page we obtain

hk�M� � hk�1�M� � �2k

k
�

on the other hand. Together this gives:

χ�M� � 2 � ��1�k�1�2k

k
��2k � 1

k
��1

� 2 � 2��1�k�1
�

¢̈̈̈
¦̈̈̈
¤

0 for even k

4 for odd k
. j

In a similar way, we can calculate the number of facets of such a �k�1�-Hamiltonian

�2k � 2�-submanifold of β2k. This is done in the following.

Lemma 5.9 Let M be a �k � 1�-Hamiltonian �2k � 2�-submanifold of β2k. Then

for the number of facets of M we have

f2k�2�M� � 4k�2k � 2

k � 1
�. (5.5)

Proof. In what follows we will make use of the following three binomial identities1:

k�1

Q
i�0

��1�i�2k � 1

i
� � ��1�k�1�2k � 2

k � 1
�, (5.6)

1The author is indebted to Isabella Novik for her kind support regarding the revision of this
section of the work at hand. He wishes to thank her for the fruitful discussions on h-vectors,
for pointing him to the work of Ron Adin (cf. Lemma 5.7 on page 105) and for giving hints to
these binomial identities. In a first version (using f -vectors), the proofs of 5.8 on the preceding
page and 5.9 were less elegant.
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2
k�1

Q
i�0

�2k

i
� � 22k

� �2k

k
�, (5.7)

k

Q
i�0

i�2k

i
� � k22k�1. (5.8)

The first Identity (5.6) on the previous page can be obtained by an iteration

of Pascal’s identity, see 4.18 in Gould’s list [54]. The second Identity (5.7) is a

consequence from the fact that the sum of all binomial coefficients �2k
i
� is 22k and

the fact that the binomial coefficients are symmetric (cf. 2.42 in Gould’s list [54]).

Looking at the third Identity (5.8), the left-hand-side counts the number of subsets

of �1, . . . , 2k� with size i B k with a distinguished element. For each such subset, we

can first choose its distinguished element for which there are 2k choices and then

complete it to a set of size i, which amounts to choosing i�1 B k�1 elements out of

a �2k � 1�-element set for which there are exactly 22k�2 choices, which shows (5.8).

Let us now continue with the proof of Lemma 5.9 on the previous page. The

number of facets of M in terms of the h-vector is

f2k�2�M� � 2k�1

Q
i�0

hi�M�.
Using the Dehn-Sommerville equations (5.4) on the preceding page, the above sum

can be written in terms of hi, i B k � 1 and χ�M�:
f2k�2�M� � 2

k�1

Q
i�0

hi�M� � k�1

Q
j�0

��1�j�2k � 1

j
��χ�M� � 2�.

Using the identities (5.2), (5.3) and (5.6), the above transforms to

f2k�2�M� � 2
k�1

Q
i�0

i

Q
j�0

�2k

j
� � k�1

Q
j�0

��1�j�2k � 1

j
� � �χ�M� � 2�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
� ��1�k�1�2k�2

k�1
� � 2��1�k�1

� ���
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��� � k�1

Q
i�0

2�k � i��2k

i
� � 2�2k � 2

k � 1
�,

� 2k
k�1

Q
i�0

�2k

i
� � 2

k�1

Q
i�0

i�2k

i
� � 2�2k � 2

k � 1
�.

From this we obtain

f2k�2�M� � k �22k
� �2k

k
�� � �k22k

� 2k�2k

k
�� � 2�2k � 2

k � 1
�,

� k�2k

k
� � 2�2k � 2

k � 1
�,

� �4k � 2��2k � 2

k � 1
� � 2�2k � 2

k � 1
�,

� 4k�2k � 2

k � 1
�,

as claimed, where the identities (5.7) and (5.8) were used in the first step. j

Moreover, there is the following lower bound theorem for centrally symmetric

triangulations of 2k-manifolds due to Sparla [126].

Theorem 5.10 (Lower Bound Theorem, Th. 3.6 in [124])

Let M be a combinatorial 2k-manifold that contains all vertices of a centrally sym-

metric simplicial polytope P ` Ed. If skelk�P � ` skelk�SM S� and M is a subcomplex

of C�∂P �, then the following holds:

��1�k�2k � 1

k � 1
��χ�M� � 2� C 4k�1�1

2�d � 1�
k � 1

�. (5.9)

For d A 2k � 1 equality in (5.9) holds if and only if P is affinely equivalent to the

cross polytope βd.

We will show in the course of this chapter that the above inequality is sharp for

k B 12. We furthermore conjecture that it is sharp for all k.
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5.3.2 The construction principle Φ

Let M2 be Altshuler’s unique centrally symmetric triangulation of the 2-torus

T � S1 � S1 on 8 vertices [126, Satz A.1] given by the following facet list:

`0 1 2e, `0 1 7e, `0 2 5e, `0 3 5e,
`0 3 6e, `0 6 7e, `1 2 3e, `1 3 6e,
`1 4 6e, `1 4 7e, `2 3 4e, `2 4 7e,
`2 5 7e, `3 4 5e, `4 5 6e, `5 6 7e.

(5.10)

M2 is a 1-Hamiltonian subcomplex of β4 assuming a vertex labeling of the cross

polytope with elements of Z8 such that the four diagonals are the edges `i, i � 4e,
0 B i B 3. The full automorphism group G2 of M2 is generated by the three

permutations

σ � �0,1,2,3,4,5,6,7�, τ � �0,6��1,5��2,4�, λ � �0,2��1,5��4,6�.
G2 is of order 32 and can be written as a semi direct product �D8 � C2� # C2,

where the leftmost cycle σ above generates the cyclic subgroup Cn and the two

multiplications τ � x( �x mod n and λ � x( 3x mod n represent the two elements

of order 2 above and correspond to two subgroups of type C2.

If one now takes the link of the vertex 0 in M2 and expands this link by the

procedure Φ as explained below, one gets a new 4-dimensional combinatorial

manifold M4 that is a Hamiltonian subcomplex of β6, which topologically is a

sphere product S2 � S2 and has an automorphism group of the same type, see

Remark 5.12 on page 113.

Construction Principle Given the complex Md, one can construct a new simpli-

cial complex Md�2 from Md by the following procedure Φ:
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0-1

1

*6

35

2

���1�
7

lk(0)

1

lk(0) � `�1 0 1e
Figure 5.1: Construction of M4 � S2 � S2 from the link of 0 in M2 � S1 � S1.

3k

2k

k
Φ1

2k � 2

3k � 3 k � 1

�1 1

`0e
`�1 0 1e

Figure 5.2: Construction of M2k�2 � Sk�1�Sk�1 from the link of 0 in M2k � Sk �Sk.

First, the vertex labels of the link L0 �� lkMd�0� of the vertex 0 in Md are

embedded into Z4k�4 as follows:

ψ � Z4k��0,2k� � Z4k�4

v (

¢̈̈̈
¦̈̈̈
¤
v � 1 for 1 B v B 2k � 1

v � 3 for 2k � 1 B v B 4k � 1
.

In succession, the join of all simplices in the link L0 with a new simplex `�1, 0, 1e �
`4k � 3, 4k � 4, 4k � 5e is taken, again in Z4k�4. This yields a new simplicial complex

M̃d�2.

Note that if Md did not contain any diagonal `i,2k � ie as face, then M̃d�2 does

not contain any element of the form `i,2�k � 1� � ie. These missing edges will be

the diagonals of the complex M̃d�2.

In a last step, the group operation of a group G generated by the permutations

σ � �0, . . . ,4k � 3�, τ � �1,4k � 3��2,4k � 2� . . . �2k � 1,2k � 3�, (5.11)
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3k � 1

4k � 3 1

3k � 1

0 � 4k

3k k

2k � 1

4k � 2

2k � 2

2
k � 1

2k � 2
k � 1

2k � 1

2k

k � 0 mod 2

3k � 2

4k � 3 1

3k � 2

0 � 4k

3k k

2k � 1

4k � 2

2k � 2 2k � 2
k � 2

2k � 1

2k

k � 1 mod 2

3k � 1

2
k � 2
k � 1

k � 13k � 1

Figure 5.3: Multiplication λ � v ( �2k � 1�v mod 4k with fixed points shown as
black squares. Geometrically, λ reflects odd vertices along the horizontal
axis and even vertices along the vertical axis. For even k (left side) λ
has two fixed points, for odd k (right side) it has four.

and, depending on the parity of k, one of the two permutations

λ �

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈¤

�3k � 1,3k � 1��3k � 3,3k � 3� . . . �2k � 1,4k � 3�
��2k � 1,1��2k � 3,3� . . . �k � 1, k � 1� for even k

��2,4k � 2��4,4k � 4� . . . �2k � 2,2k � 2�
�3k � 2,3k � 2��3k � 4,3k � 4� . . . �2k � 1,4k � 3�
��2k � 1,1��2k � 3,3� . . . �k � 2, k � 2� for odd k

��2,4k � 2��4,4k � 4� . . . �2k � 2,2k � 2�

(5.12)

on the set of simplices in M̃d�2 is considered. σ is a rotation and τ , λ correspond

to multiplications τ � v ( �v mod 4k and λ � v ( �2k � 1�v mod 4k, respectively.

See Figure 5.3 for an illustration of the operation of the multiplication λ on the set

of vertices. Note that this group operation leaves the diagonals of M̃d�2 invariant

and we have the following result.

Corollary 5.11

If M2k, k C 2 is a complex obtained from M2 by iterating the process Φ, then M2k

contains 2k diagonals `i, 2k� ie, 0 B 1 @ 2k, and thus is a subcomplex of the 2k-cross

polytope β2k.
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5.12 Remark Sparla showed in [124, Th. B.1] that there exist exactly three com-

binatorial types of centrally symmetric triangulations of S2 � S2 on twelve vertices,

all of which are 2-Hamiltonian subcomplexes of C�∂β6�. The complex M4 obtained

by the procedure Φ from the link of the vertex 0 in M2 corresponds to the type M3

in [124, Th. B.1].

Now we can state the central conjecture of this chapter.

Conjecture 5.13

The manifolds M2k�2 obtained by the construction principle Φ above are k-Hamiltonian

submanifolds of β2k for any k. Topologically, they are triangulations of Sk�1 � Sk�1.

We can at least prove Conjecture 5.13 up to a value of k � 12: Up to k � 12, the

construction Φ was carried out on a computer using the software package simpcomp

[44, 45] and the correctness of Conjecture 5.13 was verified as described below.

Theorem 5.14

For k B 12 there exist centrally symmetric triangulations of Sk�1 � Sk�1 that are

k-Hamiltonian subcomplexes of β2k.

The proof uses the following theorem due to Matthias Kreck published in [72].

Theorem 5.15 (M. Kreck [72])

Let M be a 1-connected smooth codimension 1 submanifold of Sd�1 and d A 4.

If M has the homology of Sk � Sd�k, 1 @ k B
d
2 , then M is homeomorphic to

Sk�Sd�k. If d � 4, then M is diffeomorphic to S2�S2. The corresponding statement

holds for PL respectively topological manifolds, if one replaces “smooth” by “PL”,

respectively “topological” and “diffeomorphic” by “PL-homeomorphic”, respectively

“homeomorphic” in the preceding statement.

Proof. First of all, Sd�1 decomposes by X 8Y by the generalized Jordan separation

theorem [123], X,Y are 1-connected by the Seifert-van-Kampen theorem [138,

Thm. 2.5] and have the homology of Sk and Sd�k, respectively. As k B
d
2 , the

generator of πk�X� � Hk�X� can be represented by an embedding of Sk in the

interior of X by the Hurewicz theorem [138, Thm. 7.1]. Now denote by E the normal
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bundle of Sk in Sd�1 and choose a tubular neighborhood to identify the disk bundle

of E with a neighborhood of Sk in X. In a next step, it has to be verified that the

complement C of the interior of the disk bundle in X is an h-cobordism between

the sphere bundle and ∂X �M . For d A 4, the h-cobordism theorem [100] implies

that M is diffeomorphic to the sphere bundle of E. If d � 4, one can use Freedman’s

topological h-cobordism theorem [49] to conclude that M is homeomorphic to the

sphere bundle of E.

It remains to verify that C is an h-cobordism. By virtue of the Seifert-van-

Kampen theorem C is 1-connected and by virtue of the Mayer-Vietoris sequence

the inclusions of the sphere bundle of E and from ∂X to C induce isomorphisms

in the homology up to dimension d
2 . By Lefschetz duality the inclusion then also

induces isomorphisms on the remaining homology groups and by the Whitehead

theorem [138, Thm. 7.13] both inclusions are homotopy equivalences.

To finish the proof, we show that the bundle E is the trivial bundle. As E is the

stable normal bundle of Sk in Sd�1, it is stably trivial. Now as k B d
2 , the dimension

of the vector bundle E is larger than k and in this case a stably trivial bundle has

to be trivial.

Note that since all tools used above are also available for PL and topological

manifolds by the fundamental work of Kirby and Siebenmann [69], the corresponding

statement also holds for PL respectively topological manifolds M , where the term

“diffeomorphism” above has then to be replaced by the term “PL-isomorphism” or

“homeomorphism”, respectively. j

Let us now come to the proof of Theorem 5.14 on the preceding page.

Proof (of 5.14). For k B 3, the statement was known to be true before [124]. For

k C 4, Kreck’s Theorem 5.15 on the previous page can be applied and states that

we only have to verify that the complexes are combinatorial manifolds and have

the homology of Sk�1 � Sk�1, i.e. that

Hi�M2k�2� �
¢̈̈̈̈
¨̈¦̈̈̈
¨̈̈¤

Z for i � 0,2k,

Z2 for i � k,

0 otherwise.
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For the complexes M2k�2 obtained by the process Φ this is indeed the case for

k B 12, as was checked with the help of a computer algorithm modeling the process

Φ in the GAP system with the help of the package simpcomp, see Appendix C on

page 139 and Appendix E on page 177. j

As a consequence of Theorem 5.14 on page 113 we have the following result.

Corollary 5.16

Sparla’s inequality (5.9) on page 109 for combinatorial �k � 1�-connected 2k-

submanifolds M that are k-Hamiltonian subcomplexes of the �2k � 2�-cross polytope

is sharp up to k � 12.

Note that the only values for χ�M� that can occur above are χ � 0 for odd k

and χ � 4 for even k, see Corollary (5.2) on page 106. We furthermore conjecture

(5.9) to be sharp for all values of k.

Conjecture 5.17

For each k, the triangulation M2k as constructed in Section 5.3.2 fulfills equality

in (5.9) on page 109. In particular, Sparla’s inequality (5.9) for combinatorial

�k � 1�-connected 2k-submanifolds that are k-Hamiltonian subcomplexes of the

�2k � 2�-cross polytope is sharp for all k.

5.3.3 The construction Φ using difference cycles

In order to facilitate the construction Φ, we will mod out the operation of the cyclic

group (as a subgroup of the full automorphism group) in the representation of the

triangulations Md. This allows us to work on the level of difference cycles. Note

that —as before— we will work with difference cycles that are not necessarily given

in their minimal representation in the following. In terms of difference cycles, the

anchor point of the iterative process, the triangulation M2, can be written as

�1 � 1 � 6�, �3 � 3 � 2�, (5.13)

where the two difference cycles are of full length and encode the facet list shown

in (5.10) on page 110.
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In order to show how the process Φ can also be explained on the level of difference

cycles, we have to do two things. First, we have to establish the join process with

the simplex `�1,0,1e and in a second step we have to explain a multiplication on

the set of difference cycles, see Definition 5.2 on page 100. This will be discussed in

the following. As a result, counting the number of facets of the complexes Md is

facilitated.

The join with the simplex `�1, 0, 1e can be carried out on a difference cycle level

and corresponds to the operation of gluing a sequence of the form 1 � 1 into the

difference cycle, while simultaneously increasing the “opposite” difference by 2 to

accommodate for the change of modulus from 4k to 4k � 4. Let us explain what

we mean by “opposite” here. Since none of the simplices may contain one of the

diagonals `i, i�2ke as a face, for any representative δB � �d1, . . . , dk� of a difference

cycle ∂D and for any entry di of δB, there exists no entry dj of δB such that there

exits a running sum (see Definition 5.18 on the facing page) Pji � 2k. Thus, there

exits an entry dj with a minimal index j such that Pji A 2k. This entry dj is referred

to as the “opposite entry of di”. Note that necessarily dj A 1 must hold here.

We refer to the join procedure with the simplex `�1,0,1e as inheritance in the

following sense: if a difference cycle ∂C of dimension 2k yields a new difference

cycle ∂D of dimension 2k under the process Φ, then ∂C will be referred to as father

cycle and ∂D as child cycle. The inheritance process here takes place on diagonals

of the triangle structure shown in Table A.1 on page 130 and Table A.2 on page 131

and we will also write ∂C � ∂D to state the fact that ∂D is a child cycle of the

father cycle ∂C. The superscript in the inheritance symbol � and more details of

the inheritance scheme will be explained in Section 5.3.4 on page 120.

Let us now describe a multiplication on difference cycles. Note that for ease of

notation we will sometimes just write D instead of ∂D for a difference cycle from

now on, if no confusion can be expected.

Definition 5.18 (running sum) Let k,n > N, n A k, and let D � �d0 � � � � � dk�
be a difference cycle in Zn. Then a running sum of D with value S is a sum of

116



5.3. A conjectured series of triangulations of Sk�1
� Sk�1

consecutive entries of D of the form

l�m

Q
i�l

di � S,

where m B k, the summation is carried out over Z and the index i is taken modulo

n. For ease of notation we will most of the time just write Pl�ml �D� or just Pl�ml
from now on.

This allows us to reformulate the facts of the process Φ established above on the

level of difference cycles.

Corollary 5.19

If a difference cycle D does not contain any of the diagonals, i.e. a running sum

S with S � 2k mod 4k, then the set of all difference cycles obtained from D by

the construction Φ does not contain any difference cycle D̂ with a running sum

S � 2�k � 1� mod 4�k � 1�.

This means that the complexes obtained by the process Φ are subcomplexes of

the 2k-cross polytope for each k.

The next lemma will help us to better understand the structure of the difference

cycles obtained with the process Φ.

Lemma 5.20 Let D � �d1 � � � � � d2k�1� be a difference cycle over Z4k with an even

number of running sums S with S � 1 mod 4k and let p�D� and q�D� denote the

number of distinct running sums of D with Pba�D� � 1 mod 4k and Pba�D� � 2k � 1

mod 4k, respectively. Furthermore, let D̂ �� �2k � 1� �D. Then the following holds:

p�D̂� � q�D� and q�D̂� � p�D�.

Proof. If there exist entries di � 1 or di � 2k � 1 in D, these get mapped to entries

d̂i � 2k � 1 or d̂i � 1 in D̂, respectively. We will thus exclude these cases from now

on and look at running sums Pba�D� A 2k � 1. On the one hand, �2k � 1� �Pba �
��2k�1�da � � � � � �2k�1�db� � 2k�1 mod 4k and analogously for any Pba�D� � 2k�1
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mod 4k one has �2k�1��Pba � 1 mod 4k, i.e. p�D̂� C q�D� and q�D̂� C p�D�. On the

other hand, if there exists a running sum �2k � 1�Pba � 2k � 1 mod 4k, then Pba � 1

mod 4k and if there exists a running sum �2k � 1�Pba � 1 mod 4k, then Pba � 2k � 1

mod 4k, as gcd�2k � 1,4k� � 1 and �2k � 1�2 � 1 mod 4k, i.e. p�D̂� B q�D� and

q�D̂� B p�D�. Thus, p�D̂� � q�D� and q�D̂� � p�D�. j

Now we can make another observation on the difference cycles obtained by the

process Φ.

Lemma 5.21 Let D be a difference cycle of length 2k � 1 that is obtained by the

process Φ and let p�D�, q�D� be defined like in Lemma 5.20 on the preceding page.

Then the following holds:

p�D� � q�D� � 2k � 2. (5.14)

Particularly, all difference cycles obtained by the process Φ have an even number

of differences of the form di � 1 and an even number of running sums with value

2k � 1.

Proof. The statement follows by induction. It holds for k � 2 and the two difference

cycles �1 � 1 � 6� (with p � 2 and q � 0) and �3 � 3 � 2� (with p � 0 and q � 2). Now

assume that the statement holds for k. A difference cycle D � �d1 � � � � � d2k�1� over

Z4k for which (5.14) holds is mapped to a difference cycle D̂ � �d̂1 � � � � � d̂2k�1� over

Z~�4k � 4�Z by the mapping Φ. We will now show that if p�D� � q�D� � 2k � 2,

then p�D̂� � q�D̂� � 2�k � 1� � 2 � 2k. Obviously, p�D̂� � p�D� � 2 holds. It thus

remains to show that q�D̂� � q�D�. We will first show that q�D� C q�D̂�, i.e. that

any running sum Ŝ � Pbi�a d̂i � 2k � 1 in D̂ implies that there exists a running sum

S � Pb̃i�ã di � 2k � 1 in D. Since P d̂i �Pdi � 4 and the differences of D̂ differ from

the ones of D only by a consecutive pair of differences with d̂i � d̂i�1 � 1 and one

“opposite” entry d̂j � dk � 2 for some k, either the pair of differences d̂i � d̂i�1 � 1 or

the “opposite” entry are part of the running sum. This means that if there exists a

running sum Ŝ in D̂ like above, then there also exists a uniquely corresponding

running sum S like above in D, i.e. q�D� C q�D̂�. On the other hand every running

sum S � 2k � 1 in D yields a running sum Ŝ � 2k � 1 in D̂ as it contains exactly

on pair of antipodal points of Z4k, i.e. q�D� B q�D̂�. Altogether it follows that

q�D� � q�D̂� which finishes the proof of the statement. j
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Thus, the set of difference cycles obtained by the process Φ for each k can be

grouped by the number of running sums Si with Si � 1 mod 4k and Si � �2k � 1�
mod k. We will refer to these grouped difference cycles as classes of difference

cycles and denote a class of difference cycles on level k (i.e. the difference cycles

are of dimension 2k � 2) that contains j distinct entries di � 1 by the symbol Ckj , see

Table A.1 on page 130 for the classes and Table A.2 on page 131 for the conjectured

number of class elements. The latter form a Pascal triangle scheme, and in fact one

seems to obtain a squared Pascal triangle, i.e. Pascal’s triangle where each entry is

squared. For example, the top element of the triangle in Table A.2 on page 131 for

k � 1 is the class C1
0 that contains one difference cycle of the form ∂D � �4�. Note

that the inheritance relation � maps a father cycle in Ckj to child cycles in Ck�1
j�2 as

described before.

The multiplication �λk � 2k � 1 operates on the set of classes Ck
j for each fixed k.

Corollary 5.22

The multiplication

λk � Z4k �Z4k

x ( �2k � 1�x mod 4k

acts as an involution on the set of difference cycle classes, mirroring the difference

cycles along the vertical axis of the squared Pascal triangle shown in Table A.1 on

page 130 and Table A.2 on page 131. For any difference cycle D, q�D� � p�λ �D�
and p�D� � q�λ �D� holds.

Thus, the operation of the multiplication λk yields orbits of length two in the

general case — but there exist special cases for odd k where difference cycles have

�2k � 1� as multiplier, see Definition 5.1 on page 99. These form 1-element orbits

of the operation �λk and for those difference cycles necessarily p�D� � q�D� holds.

This will be of interest in the next section where we will have a closer look at the

class cardinalities shown in Table A.2 on page 131.

The second multiplication ���1� acts as an involution on the set of difference

cycles by reversing their entries. See Table 5.1 on page 121 for the number of

difference cycles in M2k�2, 1 B k B 7, that have the multiplier ���1�, again grouped
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by the number of running sums Si with Si � 1 mod 4k and Si � �2k � 1� mod k.

These seem to form a Pascal triangle, too.

Comparing the conjectured number of difference cycles in Table A.2 on page 131

and taking the row sum for every k, we obtain

k�1

Q
i�0

�k � 1

i
�2

� �2k � 2

k � 1
�

as the conjectured number of difference cycles in each complex M2k�2. Assuming

furthermore orbits of full length under the operation of the cyclic automorphism

group (see Lemma 5.5 on page 101), we obtain

f2k�2�M2k�2� � 4k�2k � 2

k � 1
�

as the conjectured number of facets of the complex Mk�2. Lemma 5.9 on page 107

tells us that these are the facet numbers that a k-Hamiltonian �2k � 2�-manifold

in β2k must have. Since the complexes M2k�2 are k-Hamiltonian in β2k, we know

that β̃0 � � � � � β̃k�1 � 0. Assuming that M2k�2 is an orientable manifold, we get

β̃2k�3 � � � � � β̃k�1 � 0 by Poincaré duality. As by Lemma 5.8 on page 106 the Euler

characteristic of M2k�2 is χ � 2� 2��1�k�1, this determines the “genus” of M2k�2 as
βk

2 � 1. For k C 4, we can now apply Kreck’s Theorem 5.15 on page 113: M2k�2 is a

manifold with Euler characteristic χ�M2k�2� � 2 � 2��1�k�1 and thus has the same

homology as Sk�1 � Sk�1. Altogether it now follows that

M2k�2
�PL S

k�1
� Sk�1.

5.3.4 More on inheritance

Let us now sketch how one could proof that the process Φ indeed yields the number

of orbits as shown in Table A.2 on page 131. The key ingredient here is to understand

how the orbits behave under multiplication with λk � 2k � 1 and how the process

of inheritance works. Remember that in this terminology the �2k � 1�-difference

cycles yielding new �2k � 1�-difference cycles with an appended sub-sequence 1 � 1,
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Table 5.1: The conjectured number of difference cycles of the triangulations of
M2k�2 � Sk�1 � Sk�1 as Hamiltonian subcomplexes of β2k for k � 2, . . . , 7
that have the multiplier ���1�.
k � 1: 1

k � 2: 1 1

k � 3: 1 2 1

k � 4: 1 3 3 1

k � 5: 1 4 6 4 1

k � 6: 1 5 10 10 5 1

k � 7: 1 6 15 20 15 6 1

the former are called father cycles and the latter are referred to as child cycles.

The inheritance process is along the diagonals of the triangle structure shown in

Table A.2.

First of all note that for every difference cycle ∂D, every of its entries di x 1

is an opposite entry for some other element (or a sequence of elements of type

1 � � � � � 1) of ∂D. This means that under the process Φ every father cycle has as

many distinct child cycles as it has entries di x 1 and that every child cycle has at

least one sub-sequence of elements of the form �di � di�1� � 1 � 1. Cycles that do not

posses this property are called fatherless or orphan as they do not have a father

cycle.

Looking at the orbit schema as shown in Table A.2 and keeping in mind that the

multiplication with λk � 2k � 1 “mirrors” the cycles along the middle of the triangle

structure in the sense of Lemma 5.21 on page 118, it is obvious that for every k

the one cycle counted by the rightmost 1-entry of the triangle row is obtained by a

multiplication of the cycle counted by the leftmost 1-entry of the row by λk � 2k�1.

The leftmost diagonal of the triangle in Table A.2 contains only 1-entries that are

children of each other. We will show this by induction. For the (degenerate) case of

k � 1 the only difference cycle is the difference cycle consisting of one difference,

∂D1 � �4�. This cycle is invariant under the multiplication �λk � 2k � 1 � 1 and

���1� in Z4k (compare Table 5.1). In terms of inheritance, the cycle ∂D1 � �4� gives

birth to the cycle ∂D2 � �1 � 1 � 6� as described before. ∂D2 in term gives birth to
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the cycle ∂D3 � �1 � 1 � 1 � 1 � 8� and so on, with ∂Dk � �1 � � � � � 1 � 2k � 2�. Note that

these cycles only have one entry di x 1 and that they just have one child under

the process Φ, as a difference of 1 can never be opposite to any other difference

as the cycles must not allow 2k as a running sum. Secondly, the cycles obtained

in this way are all invariant under the multiplication of ���1�, i.e. the difference

cycles have �1 as a multiplier, compare Table 5.1. Now as the difference cycles

counted by the rightmost 1-elements of Table A.2 are obtained from the cycles ∂Di

by multiplication with λk � 2k � 1, these have no 1-entries and thus yield 2k � 1

distinct children under the process Φ. Since the property of the maximal number

of children a cycle can have under the process Φ is constant on the diagonals of

the triangle in Table A.2, each diagonal can be assigned its “fertility number” in

terms of this maximal number of children a cycle can have under the process Φ.

Using this inheritance scheme one can try to show that the process Φ indeed yields

the cycle numbers claimed. This has been done for the first diagonal already (see

above) and will be shown for the second diagonal in the following. Unfortunately,

the proof in its full generality has to be left open here as there exist cycles in the

process that are not children of any other cycles, the numbers of which have to be

known in order to complete the proof. These orphans have λk � 2k � 1 as multiplier

and can only appear for odd values of k as they have the same number of 1-entries

and distinct running sums with value 2k � 1. These will be closer investigated

upon in the following. The general proof could then be carried out in a double

induction on the diagonals and the elements of the diagonals of the triangle shown

in Table A.2.

5.3.5 Counting difference cycles and inheritance

Let us describe the inheritance scheme � of the process Φ as illustrated in Table A.1

and Table A.2 in more detail. One particularity of this inheritance is that one

difference cycle ∂D can be obtained by the process Φ from different father difference

cycles that are not equivalent, i.e. there occur situations where two distinct difference

cycles ∂F1 x ∂F2 have a common child, i.e. that there exists a ∂D with ∂F1 � ∂D
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and ∂F2 � ∂D. This has to be taken into account when counting the number of

difference cycles obtained by the inheritance �.

Definition 5.23 (counting value of a difference cycle) Let ∂D be a differ-

ence cycle that is obtained by the process Φ. Then we define a counting value or

valuation of ∂D by the map

v�∂D� �� 1 �
fmax � f

f � 1
�
fmax � 1

f � 1
> Q,

where f denotes the number of fathers of ∂D (i.e. the number of distinct sub-

sequences di � � � � � di�j of ∂D with di � � � � � di�j � 1), fmax the maximal number of

fathers of ∂D which equals the maximal number of children that can occur in the

diagonal that ∂D belongs to.

This valuation is motivated by the following law that the inheritance adheres to.

Inheritance Rule: Let ∂D be a difference cycle with f A 0 fathers lying in the

class C1 and assume that C1 � C2. Then ∂D has v children with v fathers and

fmax � f children with v � 1 fathers. As we want to avoid double counting children,

we will for each child that has several fathers only attribute a fraction of the child

to each father cycle. Eliminating double counting, ∂D thus has one child with f

fathers and fmax�f
f�1 children with f � 1 fathers. This is reflected in the valuation, i.e.

v�c� counts the (fractional) amount of children that ∂D contributes to the class C2

and v�C1� � #C2. In the special case that ∂D is fatherless, it will have fmax children

with one father, i.e. v�∂D� � C is this case.

It will be shown in the following that using the valuation function v, the number

of children yielded by one class of difference cycles of the process Φ can be calculated

and thus that the inheritance � yields the number of difference cycles claimed in

Table A.2.

Remember that the Pascal triangle like structure of Table A.2 is symmetric to the

central vertical axis by virtue of the multiplication with λk � 2k�1 as was described

already. Thus, if the number of children produced by one class of difference cycles

is known, this yields one new entry in the triangle of Table A.1. The number of
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difference cycles in the class that is obtained from the newly obtained class by

the multiplication with λk is also known, as all orbits of the operation �λk must

have length two, unless k is odd. In the latter case there exists a “middle class”

that is invariant under the operation of �λk and in this case fatherless or orphan

difference cycles can occur constituting one-element orbits of �λk. These difference

cycles contain no sub-sequences of the type �1 � � � � � 1� of length 2 or longer and

have λk as a multiplier.

The orphan difference cycles play an important role for the inheritance scheme

of Φ as will be shown in the following.

We will now show that the operation Φ does yield the number of difference cycles

as shown in Table A.2, at least for the first two diagonals �1 and �3. The general

case could be proved (if one knew the exact number of orphan difference cycles

for all k) using a double induction: in the inner induction the claimed number of

children in each step is proved for one fixed diagonal �i, where the outer induction

runs over all diagonals, where the information obtained in the steps before has to

be used (via the mirroring operation given by the multiplication �λk).

5.3.6 Putting it all together

As was shown before, the classes Ck2k�2 in the first diagonal of Table A.1 on page 130

are all of cardinality 1. By multiplication with λk, the same holds for the classes Ck0 .

Let us now have a look at the inheritance �3 on the second diagonal. Here we start

with the single member �3 � 3 � 2� of C2
0 that has no 1-entries and thus has 3 child

cycles ∂A � �3 � 2 � 3 � 1 � 1 � 2� � �1 � 1 � 2 � 5 � 3�, ∂B � �3 � 3 � 1 � 1 � 3 � 2 � 2� � �1 � 1 �
3 � 4 � 3� and ∂C � �1 � 1 � 3 � 3 � 2 � 2� � �1 � 1 � 3 � 5 � 2� with one father each. The

class C3
2 is invariant under multiplication with λk � 5. The cycles ∂A and ∂B have

λk as multiplier and the cycle ∂B gets mapped to ∂D �� λk∂B � �1 � 2 � 1 � 4 � 4�,
a fatherless cycle. Counting the child cycles obtained by applying the valuation

function of Section 5.3.5 on page 122 and denoting the sets of difference cycles

with i father cycles by Fi, we successively get the element count of the classes

Ck2k�4, using the valuation function v � fmax�f
f�1 with fmax � 7 and denoting above the
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arrows the fraction of distinct child elements that one difference cycle yields under

inheritance:

k #F0 #F1 #F2 #F3 P#Fi �k�1
2
�2

3 1 3 0 0 4 4
�
3
1

�
�

�
�
2
2

�
�

�
�
1
3

�
�

�

4 0 6 3 0 9 9
�
3
1

�
�

�
�
2
2

�
�

�
�
1
3

�
�

�

5 0 6 9 1 16 16
�
3
1

�
�

�
�
2
2

�
�

�
�
1
3

�
�

�

6 0 6 15 4 25 25
�
3
1

�
�

�
�
2
2

�
�

�
�
1
3

�
�

�

7 0 6 21 9 36 36
�
3
1

�
�

�
�
2
2

�
�

�
�
1
3

�
�

�

8 0 6 27 16 49 49

. . .

(5.15)

Note that the special case of fatherless cycles does not appear in the steps after

k � 3. Writing for each step k A 4: ak � #F1, bk � #F2 and ck � #F3, we get:

ak � 6, bk � 3 � 6k and ck �
1

3
bk � 1 � ck�1.

It is

ck �
1

3
�3 � 6�k � 1� � k�2

Q
i�0

bi� � k2.

Now define sk �� ak � bk � ck. Then we get

sk � k
2
� 6k � 9 � �k � 3�2

as the total count of elements in all classes Fi for each k and therefore for each

class Ck2k�4 the number of elements claimed in Table A.2 on page 131.

For the second diagonal and thus the classes Ck2k�6 we get a similar scheme:

125



Chapter 5. Centrally symmetric triangulations of sphere products

k #F0 #F1 #F2 #F3 #F4 #F5 P#Fi �k�1
4
�2

4 4 5 0 0 0 0 9 9
�
5
1

�
�

�
�
4
2

�
�

�
�
3
3

�
�

�
�
2
4

�
�

�
�
1
5

�
�

�

5 1 25 10 0 0 0 36 36
�
5
1

�
�

�
�
4
2

�
�

�
�
3
3

�
�

�
�
2
4

�
�

�
�
1
5

�
�

�

6 0 30 60 10 0 0 100 100
�
5
1

�
�

�
�
4
2

�
�

�
�
3
3

�
�

�
�
2
4

�
�

�
�
1
5

�
�

�

7 0 30 120 70 5 0 225 100
�
5
1

�
�

�
�
4
2

�
�

�
�
3
3

�
�

�
�
2
4

�
�

�
�
1
5

�
�

�

8 0 30 180 190 40 1 441 441
�
5
1

�
�

�
�
4
2

�
�

�
�
3
3

�
�

�
�
2
4

�
�

�
�
1
5

�
�

�

9 0 30 240 370 135 9 784 784

. . .

(5.16)

See below for the cases of the third and fourth diagonal:

k #F0 #F1 #F2 #F3 #F4 #F5 #F6 #F7 P#Fi �k�1
6
�2

5 9 7 0 0 0 0 0 0 16 16
�
7
1

�
�

�
�
6
2

�
�

�
�
5
3

�
�

�
�
4
4

�
�

�
�
3
5

�
�

�
�
2
6

�
�

�
�
1
7

�
�

�

6 9 70 21 0 0 0 0 0 100 100
�
7
1

�
�

�
�
6
2

�
�

�
�
5
3

�
�

�
�
4
4

�
�

�
�
3
5

�
�

�
�
2
6

�
�

�
�
1
7

�
�

�

7 1 133 231 35 0 0 0 0 400 400
�
7
1

�
�

�
�
6
2

�
�

�
�
5
3

�
�

�
�
4
4

�
�

�
�
3
5

�
�

�
�
2
6

�
�

�
�
1
7

�
�

�

8 0 140 630 420 35 0 0 0 1225 1225
�
7
1

�
�

�
�
6
2

�
�

�
�
5
3

�
�

�
�
4
4

�
�

�
�
3
5

�
�

�
�
2
6

�
�

�
�
1
7

�
�

�

9 0 140 1050 1470 455 21 0 0 3136 3136

. . .

(5.17)
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k #F0 #F1 #F2 #F3 #F4 #F5 #F6 #F7 #F8 #F9 P#Fi �k�1
8
�
2

6 16 9 0 0 0 0 0 0 0 0 25 25
�
9
1

�
�

�

�
8
2

�
�

�

�
7
3

�
�

�

�
6
4

�
�

�

�
5
5

�
�

�

�
4
6

�
�

�

�
3
7

�
�

�

�
2
8

�
�

�

�
1
9

�
�

�

7 36 153 36 0 0 0 0 0 0 0 225 225
�
9
1

�
�

�

�
8
2

�
�

�

�
7
3

�
�

�

�
6
4

�
�

�

�
5
5

�
�

�

�
4
6

�
�

�

�
3
7

�
�

�

�
2
8

�
�

�

�
1
9

�
�

�

8 16 477 648 84 0 0 0 0 0 0 1225 1225
�
9
1

�
�

�

�
8
2

�
�

�

�
7
3

�
�

�

�
6
4

�
�

�

�
5
5

�
�

�

�
4
6

�
�

�

�
3
7

�
�

�

�
2
8

�
�

�

�
1
9

�
�

�

9 1 621 2556 1596 126 0 0 0 0 0 4900 4900
�
9
1

�
�

�

�
8
2

�
�

�

�
7
3

�
�

�

�
6
4

�
�

�

�
5
5

�
�

�

�
4
6

�
�

�

�
3
7

�
�

�

�
2
8

�
�

�

�
1
9

�
�

�

10 0 630 5040 7560 2520 126 0 0 0 0 15876 15876
�
9
1

�
�

�

�
8
2

�
�

�

�
7
3

�
�

�

�
6
4

�
�

�

�
5
5

�
�

�

�
4
6

�
�

�

�
3
7

�
�

�

�
2
8

�
�

�

�
1
9

�
�

�

11 0 630 7560 19320 13860 2646 84 0 0 0 44100 44100

. . .

(5.18)

Note that there is always a k0 > N such that for all k A k0 there exist no fatherless

cycles in the class Ck2k�2i when looking at the inheritance along the �i � 1�-th
diagonal of Table A.1 on page 130 and Table A.2 on page 131. This is the case as

by construction there can be no fatherless cycles left of the central class Ckk�1 (for

odd k) as no class left of the central vertical axis of the triangles can be invariant

under multiplication with λk. More specifically, the series of numbers of fatherless

cycles for the inheritance along the i-th diagonal seems to be given by the numbers

of elements in the classes Ci�1
2 , . . . ,Ci�1

0 . Furthermore we have k0 � 2�i � 1� along

the i-th diagonal.

So, as already mentioned earlier, the key to be able to fully prove the numbers

arising in the inheritance process is to know how many fatherless elements there are

in each step with k B k0 for each diagonal. Unfortunately this is an open problem

as of the time being.

Knowing the series of numbers of fatherless orbits for each diagonal, the full proof

of the cardinalities of the classes of difference cycles along the diagonals should

be possible, akin to the method that was presented here for the second diagonal.
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Chapter 5. Centrally symmetric triangulations of sphere products

During the proof one would have to proceed successively from diagonal to diagonal

as the results of the earlier class cardinalities have to be used for this method.

In order to prove Conjecture 5.13 on page 113 it would thus remain to first of all

show that the orbit numbers of the triangulations M2k�2 are as conjectured and

of full length. Lemma 5.8 on page 106 then tells us that the complexes have the

expected Euler characteristic of

χ�M2k�2� �
¢̈̈̈
¦̈̈̈
¤

0 for even k

4 for odd k
,

and thus the homology of Sk�1 � Sk�1 as they are k-Hamiltonian in β2k (which

follows from Lemma 5.9 on page 107).

It finally would remain to be shown that M2k�2 is a combinatorial manifold. It

seems as methods based on shelling arguments could be of use here.
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Appendix A

Classes of difference cycles of M2k�2

This appendix contains tables that list properties of the triangulations M2k�2

presented in Chapter 5 on page 97. Table A.1 on the next page describes the classes

of difference cycles obtained by the inheritance process along the diagonals (see

also Section 5.3.4 on page 120), Table A.2 on page 131 shows the size of the classes

of Table A.1. In Table A.3 on page 132, the difference cycles of the triangulations

M2k�2 are listed for k � 2, . . . , 5. Table A.4 on page 133 contains calculated (k B 12�
and conjectured (k A 12) parameters of M2k�2. For more details of the triangulations

M2k�2 see Chapter 5 on page 97.
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Table A.1: The classes of difference cycles of the triangulations of M2k�2 � Sk�1 �Sk�1 for k � 2, . . . , 8. The inheritance scheme is
denoted by the arrows � on the right pointing out the diagonals.

�
1

k � 1: C1
0 �

3

k � 2: C2
2 C2

0 �
5

k � 3: C3
4 C3

2 C3
0 �

7

k � 4: C4
6 C4

4 C4
2 C4

0 �
9

k � 5: C5
8 C5

6 C5
4 C5

2 C5
0 �

11

k � 6: C6
10 C6

8 C6
6 C6

4 C6
2 C6

0 �
13

k � 7: C7
12 C7

10 C7
8 C7

6 C7
4 C7

2 C7
0 �

15

k � 8: C8
14 C8

12 C8
10 C8

8 C8
6 C8

4 C8
2 C8

0
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Table A.2: The size of the classes of difference cycles of Table A.1 on the facing page. The inheritance scheme is again denoted
by the arrows on the right pointing out the diagonals.

�
1

k � 1: 1 �
3

k � 2: 1 1 �
5

k � 3: 1 4 1 �
7

k � 4: 1 9 9 1 �
9

k � 5: 1 16 36 16 1 �
11

k � 6: 1 25 100 100 25 1 �
13

k � 7: 1 36 225 400 225 36 1 �
15

k � 8: 1 49 441 1225 1225 441 49 1
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Table A.3: Difference cycles of the triangulationsM2k�2 for k � 2, . . . , 5. Difference cycles that are invariant under the multiplication
��2k � 1� in Z4k are marked with the superscript #, the ones invariant under the multiplication ���1� in Z4k are
marked with the superscript �.

k difference cycles
2 �1 � 1 � 6��, �2 � 3 � 3��.
3 �1 � 1 � 1 � 1 � 8��, �1 � 1 � 2 � 5 � 3�#, �1 � 1 � 3 � 4 � 3��, �1 � 1 � 3 � 5 � 2�#, �1 � 2 � 1 � 4 � 4��, �2 � 2 � 3 � 2 � 3��.
4 �1 � 1 � 1 � 1 � 1 � 1 � 10��, �1 � 1 � 1 � 1 � 2 � 7 � 3�, �1 � 1 � 1 � 1 � 3 � 6 � 3��, �1 � 1 � 1 � 1 � 3 � 7 � 2�, �1 � 1 � 1 � 2 � 1 � 6 � 4�,

�1 � 1 � 1 � 4 � 6 � 1 � 2�, �1 � 1 � 2 � 1 � 1 � 5 � 5��, �1 � 1 � 2 � 2 � 5 � 2 � 3�, �1 � 1 � 2 � 3 � 4 � 2 � 3�, �1 � 1 � 2 � 3 � 4 � 3 � 2��,
�1 � 1 � 3 � 1 � 1 � 4 � 5�, �1 � 1 � 3 � 1 � 1 � 5 � 4�, �1 � 1 � 3 � 2 � 4 � 3 � 2�, �1 � 1 � 3 � 2 � 5 � 2 � 2�, �1 � 1 � 4 � 1 � 4 � 1 � 4��,
�1 � 2 � 1 � 2 � 4 � 3 � 3�, �1 � 2 � 1 � 3 � 3 � 3 � 3��, �1 � 2 � 1 � 3 � 3 � 4 � 2�, �1 � 2 � 2 � 1 � 4 � 2 � 4��, �2 � 2 � 2 � 3 � 2 � 2 � 3��.

5 �1 � 1 � 1 � 1 � 1 � 1 � 1 � 1 � 12��, �1 � 1 � 1 � 1 � 1 � 1 � 2 � 9 � 3�, �1 � 1 � 1 � 1 � 1 � 1 � 3 � 8 � 3��,
�1 � 1 � 1 � 1 � 1 � 1 � 3 � 9 � 2�, �1 � 1 � 1 � 1 � 1 � 2 � 1 � 8 � 4�, �1 � 1 � 1 � 1 � 1 � 4 � 8 � 1 � 2�, �1 � 1 � 1 � 1 � 2 � 1 � 1 � 7 � 5�,
�1 � 1 � 1 � 1 � 2 � 2 � 7 � 2 � 3�#, �1 � 1 � 1 � 1 � 2 � 3 � 6 � 2 � 3�, �1 � 1 � 1 � 1 � 2 � 3 � 6 � 3 � 2��, �1 � 1 � 1 � 1 � 3 � 1 � 1 � 6 � 5�,
�1 � 1 � 1 � 1 � 3 � 1 � 1 � 7 � 4�, �1 � 1 � 1 � 1 � 3 � 2 � 6 � 3 � 2�, �1 � 1 � 1 � 1 � 3 � 2 � 7 � 2 � 2�#, �1 � 1 � 1 � 1 � 4 � 1 � 6 � 1 � 4��,
�1 � 1 � 1 � 1 � 4 � 7 � 1 � 1 � 3�, �1 � 1 � 1 � 1 � 5 � 6 � 1 � 1 � 3�, �1 � 1 � 1 � 1 � 5 � 7 � 1 � 1 � 2�, �1 � 1 � 1 � 2 � 1 � 1 � 1 � 6 � 6��,
�1 � 1 � 1 � 2 � 1 � 2 � 6 � 3 � 3�, �1 � 1 � 1 � 2 � 1 � 3 � 5 � 3 � 3�, �1 � 1 � 1 � 2 � 1 � 3 � 5 � 4 � 2�, �1 � 1 � 1 � 2 � 2 � 1 � 6 � 2 � 4�,
�1 � 1 � 1 � 2 � 4 � 5 � 3 � 1 � 2�, �1 � 1 � 1 � 3 � 3 � 5 � 3 � 1 � 2�, �1 � 1 � 1 � 3 � 3 � 6 � 2 � 1 � 2�, �1 � 1 � 1 � 4 � 1 � 1 � 6 � 1 � 4�,
�1 � 1 � 1 � 4 � 1 � 6 � 1 � 1 � 4�, �1 � 1 � 1 � 4 � 2 � 6 � 1 � 2 � 2�, �1 � 1 � 2 � 1 � 1 � 2 � 5 � 4 � 3�#, �1 � 1 � 2 � 1 � 1 � 3 � 4 � 4 � 3��,
�1 � 1 � 2 � 1 � 1 � 3 � 4 � 5 � 2�#, �1 � 1 � 2 � 1 � 2 � 1 � 5 � 3 � 4�, �1 � 1 � 2 � 1 � 4 � 4 � 4 � 1 � 2��, �1 � 1 � 2 � 2 � 1 � 1 � 5 � 2 � 5��,
�1 � 1 � 2 � 2 � 2 � 5 � 2 � 2 � 3�, �1 � 1 � 2 � 2 � 3 � 4 � 2 � 2 � 3�, �1 � 1 � 2 � 2 � 3 � 4 � 2 � 3 � 2�, �1 � 1 � 2 � 3 � 1 � 1 � 4 � 2 � 5�,
�1 � 1 � 2 � 3 � 1 � 1 � 4 � 3 � 4�, �1 � 1 � 2 � 3 � 2 � 4 � 2 � 3 � 2��, �1 � 1 � 2 � 3 � 2 � 4 � 3 � 2 � 2�, �1 � 1 � 2 � 4 � 1 � 4 � 2 � 1 � 4�,
�1 � 1 � 2 � 4 � 5 � 2 � 1 � 1 � 3�, �1 � 1 � 2 � 5 � 4 � 2 � 1 � 1 � 3�, �1 � 1 � 3 � 1 � 2 � 1 � 4 � 4 � 3�#, �1 � 1 � 3 � 1 � 2 � 1 � 5 � 3 � 3�,
�1 � 1 � 3 � 2 � 1 � 1 � 4 � 3 � 4�, �1 � 1 � 3 � 2 � 1 � 1 � 5 � 2 � 4�, �1 � 1 � 3 � 2 � 2 � 4 � 3 � 2 � 2�, �1 � 1 � 3 � 2 � 2 � 5 � 2 � 2 � 2�,
�1 � 1 � 3 � 3 � 1 � 4 � 1 � 2 � 4�, �1 � 1 � 3 � 3 � 1 � 4 � 1 � 3 � 3��, �1 � 1 � 3 � 3 � 5 � 1 � 2 � 1 � 3�, �1 � 1 � 3 � 4 � 4 � 1 � 2 � 1 � 3�#,
�1 � 1 � 4 � 1 � 1 � 5 � 1 � 1 � 5��, �1 � 1 � 4 � 1 � 2 � 4 � 1 � 4 � 2�, �1 � 1 � 4 � 2 � 1 � 4 � 1 � 3 � 3�, �1 � 1 � 4 � 3 � 5 � 1 � 2 � 1 � 2�,
�1 � 2 � 1 � 2 � 2 � 4 � 3 � 2 � 3�, �1 � 2 � 1 � 2 � 3 � 3 � 3 � 2 � 3�, �1 � 2 � 1 � 2 � 3 � 3 � 3 � 3 � 2��, �1 � 2 � 1 � 3 � 2 � 3 � 3 � 3 � 2�,
�1 � 2 � 1 � 3 � 2 � 3 � 4 � 2 � 2�, �1 � 2 � 1 � 4 � 1 � 3 � 3 � 1 � 4��, �1 � 2 � 2 � 1 � 2 � 4 � 2 � 3 � 3�, �1 � 2 � 2 � 1 � 3 � 3 � 2 � 3 � 3��,
�1 � 2 � 2 � 1 � 3 � 3 � 2 � 4 � 2�, �1 � 2 � 2 � 2 � 1 � 4 � 2 � 2 � 4��, �2 � 2 � 2 � 2 � 3 � 2 � 2 � 2 � 3��.
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Table A.4: Calculated parameters of the conjectured series of centrally symmetric triangulations of M2k�2 � Sk�1 �Sk�1 for k B 11
and conjectured values (marked with �) for higher values of k.

k n simplices #facets in lk�0� #diff.cycles con. type Aut #Aut χ

2 8 8�2
1
� � 16 16�3

8
� 6 2 S1

� S1 �D8 �C2� #C2 32 0

3 12 12�4
2
� � 72 72�5

12
� 30 6 S2

� S2 D8 � S3 48 4

4 16 16�6
3
� � 320 320�7

16
� 140 20 S3

� S3 �C2 �D16� #C2 64 0

5 20 20�8
4
� � 1400 1400�9

20
� 630 70 S4

� S4 D8 �D10 80 4

6 24 24�10
5
� � 6048 11088�11

24
� 2772 252 S5

� S5 �C3 � �C8 #C2�� #C2 96 0

7 28 28�12
6
� � 25872 25872�13

28
� 12012 924 S6

� S6 D14 �D8 112 4

8 32 32�14
7
� � 109824 109824�15

32
� 51480 3432 S7

� S7 �C2 �D32� #C2 128 0

9 36 36�16
8
� � 463320 463320�17

36
� 218790 12870 S8

� S8 D18 �D8 144 4

10 40 40�18
9
� � 1944800 1944800�19

40
� 923780 48620 S9

� S9 �C5 � �C8 #C2�� #C2 160 0

11 44 40�20
10
� � 8129264 8129264�21

44
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k�1

�� �2k � 1��2k�2
k�1

�� �2k�2
k�1

�� Sk�1
� Sk�1� ? 16k� 0�

k � 2l � 1 4k 4k�2k�2
k�1

�� �2k � 1��2k�2
k�1

�� �2k�2
k�1

�� Sk�1
� Sk�1� ? 16k� 4�
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Appendix B

Facet lists of triangulations

B.1 A centrally symmetric 16-vertex triangulation of

�S2
� S2�#7

Given below is the list of the 224 facets of the triangulation of �S2�S2�#7 presented

in Theorem 4.4 on page 82.

`13579e, `135715e, `135813e, `135815e, `135913e, `136810e,
`136812e, `136912e, `136916e, `1361016e, `137915e, `1381016e,
`1381114e, `1381116e, `1381213e, `1381415e, `1391114e, `1391116e,
`1391213e, `1391415e, `145912e, `145913e, `1451113e, `1451116e,
`1451216e, `146812e, `146813e, `1461214e, `1461315e, `1461415e,
`1471012e, `1471013e, `1471215e, `1471315e, `148912e, `148913e,
`14101216e, `14101316e, `14111316e,`14121415e, `157912e, `1571012e,
`1571015e, `1581113e, `1581114e, `1581415e, `15101216e, `15101415e,
`15101416e, `15111416e, `1671013e, `1671016e, `1671115e, `1671116e,
`1671315e, `1681013e, `1691114e, `1691116e, `1691214e, `16111415e,
`1791215e, `17101114e, `17101115e,`17101416e, `17111416e, `1891213e,
`18101316e, `18111316e, `19121415e,`110111415e,`235711e, `235714e,
`2351113e, `2351316e, `2351416e, `2361011e, `2361014e, `2361115e,
`2361214e, `2361215e, `2371011e, `2371014e, `238911e, `238914e,
`2381116e, `2381416e, `2391115e, `2391415e, `23111316e, `23121415e,
`24579e, `245711e, `245915e, `2451011e, `2451015e, `246714e,
`246716e, `246810e, `246816e, `2461014e, `247915e, `2471114e,
`2471213e, `2471215e, `2471316e, `2481016e, `24101114e, `24101213e,
`24101215e, `24101316e, `257914e, `258914e, `258915e, `2581215e,
`2581216e, `2581416e, `25101113e,`25101213e, `25101215e, `25121316e,
`2671213e, `2671214e, `2671316e, `268911e, `268916e, `2681011e,
`2691115e, `2691315e, `2691316e, `26121315e, `2791415e, `27101114e,
`27121415e, `2891213e, `2891216e, `2891315e, `28101116e, `28121315e,
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`29121316e, `210111316e,`357911e, `3571012e, `3571015e, `3571216e,
`3571416e, `3581315e, `3591113e, `35101213e, `35101315e, `35121316e,
`3671013e, `3671016e, `3671213e, `3671216e, `3681014e, `3681214e,
`3691216e, `36101115e, `36101315e,`36121315e, `3791115e, `37101115e,
`37101213e, `37101416e, `3891114e, `38101416e, `38121315e, `38121415e,
`39111316e, `39121316e, `457913e, `4571113e, `458914e, `458915e,
`4581114e, `4581115e, `4591216e, `4591416e, `45101115e, `45111416e,
`4671416e, `468911e, `468916e, `4681012e, `4681115e, `4681315e,
`4691114e, `4691416e, `46101214e,`46111415e, `4791315e, `47101213e,
`47111316e, `47111416e, `4891114e, `4891216e, `4891315e, `48101216e,
`410111415e,`410121415e,`5791113e, `5791216e, `5791416e, `58101214e,
`58101216e, `58101416e, `58111315e,`58121415e, `510111315e,`510121415e,
`6791113e, `6791115e, `6791315e, `67111316e, `67121416e, `68101115e,
`68101214e, `68101315e, `69111316e,`69121416e, `79121415e, `79121416e,
`810111315e,`810111316e.

B.2 A centrally symmetric 16-vertex triangulation of

S4
� S2

See below for a list of the 240 facets of M6
16 from Theorem 4.9 on page 93.

`123471214e, `123471216e, `123471314e, `123471316e, `123491214e,
`123491216e, `123491416e, `1234131416e, `123671214e, `123671216e,
`123671314e, `123671316e, `123691012e, `123691013e, `123691216e,
`123691316e, `1236101112e, `1236101113e, `1236111214e, `1236111314e,
`1239101112e, `1239101113e, `1239111214e, `1239111314e, `1239131416e,
`1247121415e, `1247121516e, `1247131415e, `1247131516e, `1249121416e,
`12412141516e, `12413141516e, `1267121416e, `1267131415e, `1267131516e,
`1267141516e, `1269101112e, `1269101113e, `1269111214e, `1269111315e,
`1269111415e, `1269121416e, `1269131516e, `1269141516e, `12611131415e,
`12712141516e, `12911131415e, `12913141516e, `1347121416e, `1347131416e,
`1349121416e, `1367121416e, `1367131416e, `136891011e, `136891013e,
`136891114e, `136891314e, `1368101113e, `1368111314e, `1369101112e,
`1369111214e, `1369121416e, `1369131416e, `1389101113e, `1389111314e,
`1478101113e, `1478101115e, `1478101316e, `1478101516e, `1478111315e,
`1478121415e, `1478121416e, `1478121516e, `1478131415e, `1478131416e,
`14710111315e, `14710131516e, `14810111315e, `14810131516e, `14812141516e,
`14813141516e, `1678101113e, `1678101115e, `1678101316e, `1678101516e,
`1678111315e, `1678131415e, `1678131416e, `1678141516e, `16710111315e,
`16710131516e, `1689101115e, `1689101316e, `1689101516e, `1689111415e,
`1689131416e, `1689141516e, `16811131415e, `16910111315e, `16910131516e,
`17812141516e, `18910111315e, `18910131516e, `18911131415e, `18913141516e,
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`234571011e, `234571016e, `234571114e, `234571416e, `234591011e,
`234591012e, `234591114e, `234591216e, `234591416e, `2345101216e,
`2347101112e, `2347101216e, `2347111214e, `2347131416e, `2349101112e,
`2349111214e, `235691012e, `235691013e, `235691113e, `235691114e,
`235691216e, `235691416e, `2356101112e, `2356101113e, `2356111214e,
`2356121416e, `2357101112e, `2357101216e, `2357111214e, `2357121416e,
`2359101113e, `2367121416e, `2367131416e, `2369111314e, `2369131416e,
`2457101112e, `2457101215e, `2457101516e, `2457111214e, `2457121415e,
`2457141516e, `2459101112e, `2459111214e, `2459121416e, `24510121516e,
`24512141516e, `24710121516e, `24713141516e, `2569101112e, `2569101113e,
`2569111214e, `2569121416e, `25710121516e, `25712141516e, `26713141516e,
`26911131415e, `26913141516e, `345781011e, `345781016e, `345781112e,
`345781216e, `3457111214e, `3457121416e, `345891011e, `345891012e,
`345891112e, `3458101216e, `3459111214e, `3459121416e, `3478101112e,
`3478101216e, `3489101112e, `356891012e, `356891013e, `356891112e,
`356891113e, `3568101112e, `3568101113e, `3569111214e, `3569121416e,
`3578101112e, `3578101216e, `3589101113e, `3689101112e, `3689111314e,
`4578101113e, `4578101316e, `4578111215e, `4578111315e, `4578121415e,
`4578121416e, `4578131415e, `4578131416e, `45710111215e, `45710111315e,
`45710131516e, `45713141516e, `4589101113e, `4589101215e, `4589101315e,
`4589111215e, `4589111315e, `45810121516e, `45810131516e, `45812141516e,
`45813141516e, `45910111215e, `45910111315e, `47810111215e, `47810121516e,
`48910111215e, `48910111315e, `5678101113e, `5678101115e, `5678101315e,
`5678111315e, `56710111315e, `5689101215e, `5689101315e, `5689111215e,
`5689111315e, `56810111215e, `56910111215e, `56910111315e, `57810111215e,
`57810121516e, `57810131516e, `57812141516e, `57813141516e, `67810131516e,
`67813141516e, `68910111215e, `68910131516e, `68911131415e, `68913141516e.
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Appendix C

The GAP package simpcomp

simpcomp1 [44, 45] is an extension (a so-called package) to GAP [51], the well known

system for computational discrete algebra. In contrast to the package homology

[38] which focuses on simplicial homology computation, simpcomp claims to provide

the user with a broader spectrum of functionality regarding simplicial constructions.

simpcomp allows the user to interactively construct (abstract) simplicial complexes

and to compute their properties in the GAP shell. The package caches computed

properties of a simplicial complex, thus avoiding unnecessary computations, inter-

nally handles the vertex labeling of the complexes and insures the consistency of a

simplicial complex throughout all operations. Furthermore, it makes use of GAP’s

expertise in groups and group operations. For example, automorphism groups and

fundamental groups of complexes can be computed and examined further within

the GAP system.

As of the time being, simpcomp relies on the GAP package homology [38] for its

homology computation, but also provides the user with an own (co-)homology

algorithm in case the package homology is not available. For automorphism group

computation the GAP package GRAPE [121] is used, which in turn uses the pro-

gram nauty by Brendan McKay [94]. An internal automorphism group calculation

algorithm in used as fallback if the GRAPE package is not available.

The package includes an extensive manual in which all functionality of simpcomp

is documented, see [44].

1The software simpcomp presented in this chapter was developed together with Jonathan Spreer.
All what is presented in this chapter is joint work and effort.
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C.1 What is new

simpcomp allows the user to interactively construct complexes and to compute their

properties in the GAP shell. Furthermore, it makes use of GAP’s expertise in groups

and group operations. For example, automorphism groups and fundamental groups

of complexes can be computed and examined further within the GAP system. Apart

from supplying a facet list, the user can as well construct simplicial complexes

from a set of generators and a prescribed automorphism group – the latter form

being the common in which a complex is presented in a publication. This feature is

to our knowledge unique to simpcomp. Furthermore, simpcomp as of Version 1.3.0

supports the construction of simplicial complexes of prescribed dimension, vertex

number and transitive automorphism group as described in [90], [29].

As of version 1.4.0, simpcomp supports simplicial blowups, i.e. the resolutions of

ordinary double points in combinatorial 4-pseudomanifolds. This functionality is to

the author’s knowledge not provided by any other software package so far.

Furthermore, simpcomp has an extensive library of known triangulations of

manifolds. This is the first time that they are easily accessible without having to

look them up in the literature [84], [29], or online [89]. This allows the user to work

with many different known triangulations without having to construct them first.

As of version 1.3.0, the library contains triangulations of roughly 650 manifolds and

roughly 7000 pseudomanifolds, including all vertex transitive triangulations from

[89]. Most properties that simpcomp can handle are precomputed for complexes in

the library. Searching in the library is possible by the complexes’ names as well as

some of their properties (such as f -, g- and h-vectors and their homology).

C.2 simpcomp benefits

simpcomp is written entirely in the GAP scripting language, thus giving the user the

possibility to see behind the scenes and to customize or alter simpcomp functions if

needed.

The main benefit when working with simpcomp over implementing the needed

functions from scratch is that simpcomp encapsulates all methods and properties
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of a simplicial complex in a new GAP object type (as an abstract data type). This

way, among other things, simpcomp can transparently cache properties already

calculated, thus preventing unnecessary double calculations. It also takes care of

the error-prone vertex labeling of a complex.

simpcomp provides the user with functions to save and load the simplicial com-

plexes to and from files and to import and export a complex in various formats

(e.g. from and to polymake/TOPAZ [52], Macaulay2 [55], LATEX, etc.).

In contrast to the software package polymake [52] providing the most efficient

algorithms for each task in form of a heterogeneous package (where algorithms are

implemented in various languages), the primary goal when developing simpcomp

was not efficiency (this is already limited by the GAP scripting language), but rather

ease of use and ease of extensibility by the user in the GAP language with all its

mathematical and algebraic capabilities.

The package includes an extensive manual (see [44]) in which all functionality of

simpcomp is documented and also makes use of GAP’s built in help system so that

all the documentation is available directly from the GAP prompt in an interactive

way.

C.3 Some operations and constructions that simpcomp

supports

simpcomp implements many standard and often needed functions for working with

simplicial complexes. These functions can be roughly divided into three groups: (i)

functions generating simplicial complexes (ii) functions to construct new complexes

from old and (iii) functions calculating properties of complexes – for a full list of

supported features see the documentation [44].

simpcomp furthermore implements a variety of functions connected to bistellar

moves (also known as Pachner moves [111], see Section 1.5 on page 24) on sim-

plicial complexes. For example, simpcomp can be used to construct randomized

spheres or randomize a given complex. Another prominent application of bistellar

moves implemented in simpcomp is a heuristic algorithm that determines whether
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a simplicial complex is a combinatorial manifold (i.e. that each link is PL homeo-

morphic to the boundary of the simplex). This algorithm was first presented by

Lutz and Anders Björner [22]. It uses a simulated annealing type strategy in order

to minimize vertex numbers of triangulations while leaving the PL homeomorphism

type invariant.

The package also supports slicings of 3-manifolds (known as discrete normal

surfaces, see [70], [58], [127]) and related constructions as well as functions related

to polyhedral Morse theory.

The first group contains functions that create a simplicial complex object from a

facet list (SCFromFacets), from a group operation on some generating simplices

(SCFromGenerators) and from difference cycles (SCFromDifferenceCycles). An-

other way to obtain known (in some cases minimal) triangulations of manifolds is to

use the simplicial complex library, see Section C.4 on the facing page. Also in this

group are functions that generate some standard (and often needed) triangulations,

e.g. that of the boundary of the n-simplex (SCBdSimplex), the n-cross polytope

(SCBdCrossPolytope) and the empty complex (SCEmpty).

The second group contains functions that take one or more simplicial complexes as

their arguments and return a new simplicial complex. Among these are the functions

to compute links and stars of faces (SCLink, SCStar), to form a connected sum

(SCConnectedSum), a cartesian product (SCCartesianProduct), a join (SCJoin)

or a suspension (SCSuspension) of (a) simplicial complexe(s).

The third and by far the largest group is that of the functions computing

properties of simplicial complexes. Just to name a few, simpcomp can compute

the f -, g- and h-vector of a complex (SCFVector, SCGVector, SCHVector), its

Euler characteristic (SCEulerCharacteristic), the face lattice and skeletons of

different dimensions (SCFaceLattice, SCFaces), the automorphism group of a

complex (SCAutomorphismGroup), homology and cohomology with explicit bases

(SCHomology, SCCohomology, SCHomologyBasis, SCHomologyBasisAsSimplices,

SCCohomologyBasis, SCCohomologyBasisAsSimplices), the cup product (SCCup-

Product), the intersection form for closed, oriented 4-manifolds (SCIntersection-

Form), spanning trees (SCSpanningTree), fundamental groups (SCFundamentalGr-
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oup), dual graphs (SCDualGraph), connected and strongly connected components

(SCConnectedComponents, SCStronglyConnectedComponents).

simpcomp can furthermore determine whether two simplicial complexes are

combinatorially isomorphic and contains a heuristic algorithm based on bistellar

flips (cf. [89, 90]) that tries to determine whether two simplicial complexes are PL

homeomorphic.

C.4 The simplicial complex library of simpcomp

simpcomp contains a library of simplicial complexes on few vertices, most of them

(combinatorial) triangulations of manifolds and pseudomanifolds. The user can load

these known triangulations from the library in order to study their properties or

to construct new triangulations out of the known ones. For example, a user could

try to determine the topological type of a given triangulation – which can be quite

tedious if done by hand – by establishing a PL equivalence to a complex in the

library.

Among other known triangulations, the library contains all of the vertex transitive

triangulations of d-manifolds, d B 11 with few (n B 13 and n B 15 for d � 2, 3, 9, 10, 11)

vertices classified by Frank Lutz that can be found on his “Manifold Page” [89], along

with some triangulations of sphere bundles and vertex transitive triangulations of

pseudomanifolds.

C.5 Demonstration sessions with simpcomp

This section contains a small demonstration of the capabilities of simpcomp in form

of two demonstration sessions.

C.5.1 First demonstration session

M. Casella and W. Kühnel constructed a triangulated K3 surface with the minimum

number of 16 vertices in [29]. They presented it in terms of the complex obtained
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by the automorphism group G � AGL�1,F16� given by the five generators

G � d

�12��34��56��78��910��1112��1314��1516�,
�13��24��57��68��911��1012��1315��1416�,
�15��26��37��48��913��1014��1115��1216�,
�19��210��311��412��513��614��715��816�,

�2131511143581674910612�

i

acting on the two generating simplices ∆1 � `2,3,4,5,9e and ∆2 � `2,5,7,10,11e.
It turned out to be a non-trivial problem to show (i) that the complex obtained

is a combinatorial 4-manifold and (ii) to show that it is homeomorphic to the K3

surface as topological 4-manifold.

This turns out to be a rather easy task using simpcomp, as will be shown below.

We will fire up GAP, load simpcomp and then construct the complex from its

representation given above.

1 $ gap

######### ###### ########### ###

############# ###### ############ ####

5 ############## ######## ############# #####

############### ######## ##### ###### #####

###### # ######### ##### ##### ######

###### ########## ##### ##### #######

##### ##### #### ##### ###### ########

10 #### ##### ##### ############# ### ####

##### ####### #### #### ########### #### ####

##### ####### ##### ##### ###### #### ####

##### ####### ##### ##### ##### #############

##### ##### ################ ##### #############

15 ###### ##### ################ ##### #############

################ ################## ##### ####

############### ##### ##### ##### ####

############# ##### ##### ##### ####

######### ##### ##### ##### ####

20

In format ion at : http ://www. gap�system . org

Try ’? help ’ f o r he lp . See a l s o ’? copyr ight ’ and ’? authors ’

Loading the l i b r a r y . P lease be pat i ent , t h i s may take a whi l e .

25 GAP4, Vers ion : 4 . 4 . 1 2 o f 17�Dec�2008 , i686 �pc� l inux �gnu�gcc

Components : smal l 2 . 1 , smal l2 2 . 0 , smal l3 2 . 0 , smal l4 1 . 0 , smal l5 1 . 0 ,

smal l6 1 . 0 , smal l7 1 . 0 , smal l8 1 . 0 , smal l9 1 . 0 , smal l10 0 . 2 ,

id2 3 . 0 , id3 2 . 1 , id4 1 . 0 , id5 1 . 0 , id6 1 . 0 , id9 1 . 0 , id10 0 . 1 ,

t rans 1 . 0 , prim 2 .1 loaded .

30 Packages : AClib 1 . 1 , Po l y cy c l i c 1 . 1 , Alnuth 2 . 1 . 3 , CrystCat 1 . 1 . 2 ,
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Cryst 4 . 1 . 4 , AutPGrp 1 . 2 , CRISP 1 . 2 . 1 , CTblLib 1 . 1 . 3 ,

TomLib 1 . 1 . 2 , FactInt 1 . 4 . 1 0 , FGA 1 . 1 . 0 . 1 , GAPDoc 0 .9999 ,

Homology 1 . 4 . 2 , IRREDSOL 1 . 0 . 9 , LAGUNA 3 . 3 . 1 , Sophus 1 . 21 ,

Polenta 1 . 2 . 1 , ResClasses 2 . 1 . 1 loaded .

35 gap> LoadPackage ( ”simpcomp” ) ; ; #load the package

Loading simpcomp 1 . 4 . 0

by F . E f f enbe rge r and J . Spreer

http ://www. i g t . uni� s t u t t g a r t . de/ Ls tD i f f g eo /simpcomp

gap> SCInfoLevel ( 0 ) ; ; #suppres s simpcomp i n f o messages

40 gap> G:=Group ( ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) ( 7 , 8 ) ( 9 , 1 0 ) ( 1 1 , 1 2 ) ( 1 3 , 1 4 ) ( 1 5 , 1 6 ) ,

> ( 1 , 3 ) ( 2 , 4 ) ( 5 , 7 ) ( 6 , 8 ) ( 9 , 1 1 ) ( 1 0 , 1 2 ) ( 1 3 , 1 5 ) ( 1 4 , 1 6 ) ,

> ( 1 , 5 ) ( 2 , 6 ) ( 3 , 7 ) ( 4 , 8 ) ( 9 , 1 3 ) ( 1 0 , 1 4 ) ( 1 1 , 1 5 ) ( 1 2 , 1 6 ) ,

> ( 1 , 9 ) ( 2 , 1 0 ) ( 3 , 1 1 ) ( 4 , 1 2 ) ( 5 , 1 3 ) ( 6 , 1 4 ) ( 7 , 1 5 ) ( 8 , 1 6 ) ,

> ( 2 , 1 3 , 1 5 , 1 1 , 1 4 , 3 , 5 , 8 , 1 6 , 7 , 4 , 9 , 1 0 , 6 , 1 2 ) ) ; ;

45 gap> K3:=SCFromGenerators (G, [ [ 2 , 3 , 4 , 5 , 9 ] , [ 2 , 5 , 7 , 1 0 , 1 1 ] ] ) ;

[ S impl ic ia lComplex

Prope r t i e s known : Dim, Facets , Generators , Name, VertexLabels .

50 Name=”complex from gene ra to r s under group ( (C2 x C2 x C2 x C2) : C5) : C3”

Dim=4

/Simpl ic ia lComplex ]

gap> K3.F ;

55 [ 16 , 120 , 560 , 720 , 288 ]

gap> K3. Chi ;

24

gap> K3. Homology ;

We first compute the f -vector, the Euler characteristic and the homology groups

of K3.

59 [ [ 0 , [ ] ] , [ 0 , [ ] ] , [ 22 , [ ] ] , [ 0 , [ ] ] , [ 1 , [ ] ] ]

60 gap> K3. I sMani fo ld ;

true

gap> K3. Inte r sec t i onFormPar i ty ;

0

gap> K3. Inte r s ec t i onFormSignature ;

Now we verify that the complex K3 is a combinatorial manifold using the heuristic

algorithm based on bistellar moves described above.

65 [ 22 , 3 , 19 ]

gap> K3. FundamentalGroup ;

In a next step we compute the parity and the signature of the intersection form of

the complex K3.
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67 <fp group with 105 generator s>

gap> S i z e ( last ) ;

1

70 gap> K3. Ne i ghbo r l i n e s s ;

This means that the intersection form of the complex K3 is even. It has dimension

22 and signature 19 � 3 � 16. Furthermore, K3 is simply connected as can either be

verified by showing that the fundamental group is trivial or by checking that the

complex is 3-neighborly.

71 3

gap> SCInfoLevel ( 2 ) ;

gap> K3. I sTight ;

#I SCIsTight : complex i s ( k+1)�ne ighbor ly 2k�manifo ld and thus t i g h t .

75 true

It now follows from a theorem of M. Freedman [49] that the complex is in fact

homeomorphic to a K3 surface because it has the same (even) intersection form.

Furthermore, K3 is a tight triangulation as it is a 3-neighborly triangulation of a

4-manifold, see Theorem 1.47 on page 30.

C.5.2 Second demonstration session

In this session the triangulation M4
15 due to Bagchi and Datta [11] is constructed

and checked to lie in K�4�, see Chapter 3 on page 53.

In the listing below, first the 5-ball B5
30 is constructed via its facet list (lines

39-60) after simpcomp was loaded (line 35-36). Then some properties of B5
30 are

calculated (lines 62-68). This is followed by the calculation of the boundary of B5
30

(lines 72-80) and the process of adding three handles between three facet pairs

�δi, δ�i�, 1 B i B 3, cf. Figure 3.1 on page 64 (lines 82-114) to finally obtain M4
15

(line 104). Subsequently, some properties of M4
15 are calculated (lines 116-129), it

is verified via bistellar moves that M4
15 is a combinatorial manifold (line 131-158)

and it is checked (also using bistellar moves) that M4
15 > K�4� (lines 160-188). In a

last step, it is verified that M4
15 is tight (lines 198-192) and the multiplicity vector

of the PL Morse function given by v1 @ v2 @ � � � @ v15 is computed (lines 193-208).
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1 $ gap

######### ###### ########### ###

############# ###### ############ ####

5 ############## ######## ############# #####

############### ######## ##### ###### #####

###### # ######### ##### ##### ######

###### ########## ##### ##### #######

##### ##### #### ##### ###### ########

10 #### ##### ##### ############# ### ####

##### ####### #### #### ########### #### ####

##### ####### ##### ##### ###### #### ####

##### ####### ##### ##### ##### #############

##### ##### ################ ##### #############

15 ###### ##### ################ ##### #############

################ ################## ##### ####

############### ##### ##### ##### ####

############# ##### ##### ##### ####

######### ##### ##### ##### ####

20

In format ion at : http ://www. gap�system . org

Try ’? help ’ f o r he lp . See a l s o ’? copyr ight ’ and ’? authors ’

Loading the l i b r a r y . P lease be pat i ent , t h i s may take a whi l e .

25 GAP4, Vers ion : 4 . 4 . 1 2 o f 17�Dec�2008 , i686 �pc� l inux �gnu�gcc

Components : smal l 2 . 1 , smal l2 2 . 0 , smal l3 2 . 0 , smal l4 1 . 0 , smal l5 1 . 0 ,

smal l6 1 . 0 , smal l7 1 . 0 , smal l8 1 . 0 , smal l9 1 . 0 , smal l10 0 . 2 ,

id2 3 . 0 , id3 2 . 1 , id4 1 . 0 , id5 1 . 0 , id6 1 . 0 , id9 1 . 0 , id10 0 . 1 ,

t rans 1 . 0 , prim 2 .1 loaded .

30 Packages : AClib 1 . 1 , Po l y cy c l i c 1 . 1 , Alnuth 2 . 1 . 3 , CrystCat 1 . 1 . 2 ,

Cryst 4 . 1 . 4 , AutPGrp 1 . 2 , CRISP 1 . 2 . 1 , CTblLib 1 . 1 . 3 ,

TomLib 1 . 1 . 2 , FactInt 1 . 4 . 1 0 , FGA 1 . 1 . 0 . 1 , GAPDoc 0 .9999 ,

Homology 1 . 4 . 2 , IRREDSOL 1 . 0 . 9 , LAGUNA 3 . 3 . 1 , Sophus 1 . 21 ,

Polenta 1 . 2 . 1 , ResClasses 2 . 1 . 1 loaded .

35 gap> LoadPackage ( ”simpcomp” ) ; ; #load the package

Loading simpcomp 1 . 4 . 0

by F . E f f enbe rge r and J . Spreer

http ://www. i g t . uni� s t u t t g a r t . de/ Ls tD i f f g eo /simpcomp

gap> f a c e t s :=

40 > [ [ 1 , 2 , 6 , 7 , 12 , 11 ] , [ 1 , 2 , 4 , 6 , 7 , 12 ] , [ 1 , 2 , 3 , 4 , 6 , 7 ] ,

> [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 3 , 4 , 5 , 6 , 30 ] , [ 3 , 4 , 5 , 6 , 30 , 29 ] ,

> [ 3 , 4 , 5 , 28 , 29 , 30 ] , [ 3 , 5 , 27 , 28 , 29 , 30 ] ,

> [ 26 , 27 , 28 , 29 , 30 , 3 ] , [ 1 , 2 , 7 , 11 , 12 , 14 ] ,

> [ 1 , 2 , 11 , 12 , 13 , 14 ] , [ 1 , 11 , 12 , 13 , 15 , 14 ] ,

45 > [ 1 , 12 , 13 , 14 , 15 , 25 ] , [ 1 , 13 , 14 , 15 , 24 , 25 ] ,

> [ 13 , 14 , 15 , 23 , 24 , 25 ] , [ 13 , 15 , 22 , 23 , 24 , 25 ] ,

> [ 21 , 22 , 23 , 24 , 25 , 13 ] , [ 2 , 6 , 7 , 9 , 12 , 11 ] , [ 6 , 7 , 8 , 9 , 11 , 12 ] ,

> [ 6 , 7 , 8 , 9 , 10 , 11 ] , [ 20 , 7 , 8 , 10 , 9 , 11 ] , [ 19 , 20 , 8 , 9 , 10 , 11 ] ,
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> [ 18 , 19 , 20 , 8 , 10 , 9 ] , [ 17 , 18 , 19 , 20 , 8 , 10 ] ,

50 > [ 16 , 17 , 18 , 19 , 20 , 8 ] ] ; ;

gap> b5 30 :=SCFromFacets ( f a c e t s ) ;

[ S impl ic ia lComplex

55 Prope r t i e s known : Dim, Facets , Name, VertexLabels .

Name=”unnamed complex 1”

Dim=5

60 / Simpl ic ia lComplex ]

gap> b5 30 .F ;

[ 30 , 135 , 260 , 255 , 126 , 25 ]

65 gap> b5 30 . Chi ;

1

gap> b5 30 . Homology ;

[ [ 0 , [ ] ] , [ 0 , [ ] ] , [ 0 , [ ] ] , [ 0 , [ ] ] , [ 0 , [ ] ] ,

70 [ 0 , [ ] ] ]

gap> bd:=b5 30 . Boundary ;

[ S impl ic ia lComplex

75 Prope r t i e s known : Dim, Facets , Name, VertexLabels .

Name=”Bd(unnamed complex 1) ”

Dim=4

80 / Simpl ic ia lComplex ]

gap> handle1 :=bd . HandleAddition ( [ 1 . . 5 ] , [ 1 6 . . 2 0 ] ) ;

[ S impl ic ia lComplex

85 Prope r t i e s known : Dim, Facets , Name, VertexLabels .

Name=”Bd(unnamed complex 1) handle ( [ 1 , 2 , 3 , 4 , 5 ]=[ 16 , 17 , 18 , 19 , 20 ] ) \
”

Dim=4

90

/ Simpl ic ia lComplex ]

gap> handle2 :=handle1 . HandleAddition ( [ 6 . . 1 0 ] , [ 2 1 . . 2 5 ] ) ;

[ S impl ic ia lComplex

95

Prope r t i e s known : Dim, Facets , Name, VertexLabels .
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Name=”Bd(unnamed complex 1) handle ( [ 1 , 2 , 3 , 4 , 5 ]=[ 16 , 17 , 18 , 19 , 20 ] ) \
handle ( [ 6 , 7 , 8 , 9 , 10 ]=[ 21 , 22 , 23 , 24 , 25 ] ) ”

100 Dim=4

/Simpl ic ia lComplex ]

gap> m4 15:=handle2 . HandleAddition ( [ 1 1 . . 1 5 ] , [ 2 6 . . 3 0 ] ) ;

105 [ S impl ic ia lComplex

Prope r t i e s known : Dim, Facets , Name, VertexLabels .

Name=”Bd(unnamed complex 1) handle ( [ 1 , 2 , 3 , 4 , 5 ]=[ 16 , 17 , 18 , 19 , 20 ] ) \
110 handle ( [ 6 , 7 , 8 , 9 , 10 ]=[ 21 , 22 , 23 , 24 , 25 ] ) handle ( [ 11 , 12 , 13 , 14 , \

15 ]=[ 26 , 27 , 28 , 29 , 30 ] ) ”

Dim=4

/Simpl ic ia lComplex ]

115

gap> SCRename(m4 15 , ”Mˆ4 15 ” ) ;

true

gap> m4 15 .F ;

120 [ 15 , 105 , 230 , 240 , 96 ]

gap> m4 15 . Chi ;

�4

125 gap> m4 15 . Homology ;

[ [ 0 , [ ] ] , [ 3 , [ ] ] , [ 0 , [ ] ] , [ 2 , [ 2 ] ] , [ 0 , [ ] ] ]

gap> m4 15 . AutomorphismGroup ;

C3

130

gap> m4 15 . I sMani fo ld ;

#I SCIsManifold : p r o c e s s i ng ver tex l i n k 1/15

#I round 0 : [ 13 , 42 , 58 , 29 ]

#I round 1 : [ 12 , 38 , 52 , 26 ]

135 #I round 2 : [ 11 , 34 , 46 , 23 ]

#I round 3 : [ 10 , 30 , 40 , 20 ]

#I round 4 : [ 9 , 26 , 34 , 17 ]

#I round 5 : [ 8 , 22 , 28 , 14 ]

#I round 6 : [ 7 , 18 , 22 , 11 ]

140 #I round 7 : [ 6 , 14 , 16 , 8 ]

#I round 8 : [ 5 , 10 , 10 , 5 ]

#I SCReduceComplexEx : computed l o c a l l y minimal complex a f t e r 9 rounds .

#I SCIsManifold : l i n k i s sphere .

#I SCIsManifold : p r o c e s s i ng ver tex l i n k 2/15
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145 . . .

#I SCIsManifold : p r o c e s s i ng ver tex l i n k 15/15

#I round 0 : [ 13 , 42 , 58 , 29 ]

#I round 1 : [ 12 , 38 , 52 , 26 ]

#I round 2 : [ 11 , 34 , 46 , 23 ]

150 #I round 3 : [ 10 , 30 , 40 , 20 ]

#I round 4 : [ 9 , 26 , 34 , 17 ]

#I round 5 : [ 8 , 22 , 28 , 14 ]

#I round 6 : [ 7 , 18 , 22 , 11 ]

#I round 7 : [ 6 , 14 , 16 , 8 ]

155 #I round 8 : [ 5 , 10 , 10 , 5 ]

#I SCReduceComplexEx : computed l o c a l l y minimal complex a f t e r 9 rounds .

#I SCIsManifold : l i n k i s sphere .

true

160 gap> m4 15 . IsInKd ( 1 ) ;

#I SCIsInKd : check ing l i n k 1/15

#I SCIsKStackedSphere : t ry 1/50

#I round 0 : [ 13 , 42 , 58 , 29 ]

#I round 1 : [ 12 , 38 , 52 , 26 ]

165 #I round 2 : [ 11 , 34 , 46 , 23 ]

#I round 3 : [ 10 , 30 , 40 , 20 ]

#I round 4 : [ 9 , 26 , 34 , 17 ]

#I round 5 : [ 8 , 22 , 28 , 14 ]

#I round 6 : [ 7 , 18 , 22 , 11 ]

170 #I round 7 : [ 6 , 14 , 16 , 8 ]

#I round 8 : [ 5 , 10 , 10 , 5 ]

#I SCReduceComplexEx : computed l o c a l l y minimal complex a f t e r 9 rounds .

#I SCIsInKd : check ing l i n k 2/15

. . .

175 #I SCIsInKd : check ing l i n k 15/15

#I SCIsKStackedSphere : t ry 1/50

#I round 0 : [ 13 , 42 , 58 , 29 ]

#I round 1 : [ 12 , 38 , 52 , 26 ]

#I round 2 : [ 11 , 34 , 46 , 23 ]

180 #I round 3 : [ 10 , 30 , 40 , 20 ]

#I round 4 : [ 9 , 26 , 34 , 17 ]

#I round 5 : [ 8 , 22 , 28 , 14 ]

#I round 6 : [ 7 , 18 , 22 , 11 ]

#I round 7 : [ 6 , 14 , 16 , 8 ]

185 #I round 8 : [ 5 , 10 , 10 , 5 ]

#I SCReduceComplexEx : computed l o c a l l y minimal complex a f t e r 9 rounds .

#I SCIsInKd : a l l l i n k s are 1� s tacked .

1

gap> SCInfoLevel ( 2 ) ;

190 gap> m4 15 . I sT ight ;

#I SCIsTight : complex i s in c l a s s K(1) and 2�ne ighbor ly , thus t i g h t .

true
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gap> PrintArray ( SCMorseMult ip l i c i tyVector (m4 15 , [ 1 . . 1 5 ] ) ) ;

[ [ 1 , 0 , 0 , 0 , 0 ] ,

195 [ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 1 , 0 ] ,

[ 0 , 0 , 0 , 1 , 0 ] ,

200 [ 0 , 1 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 1 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 1 , 0 ] ,

[ 0 , 1 , 0 , 0 , 0 ] ,

205 [ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 , 1 ] ]
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Appendix D

Enumeration algorithm for the 24-cell

The following GAP script is also available in digital form on the author’s website

[41] and upon request.

1 ################################################################################

################################################################################

#### su r f a c e 2 4 c e l l . gap ####

################################################################################

5 ################################################################################

#### Author : Fe l i x Ef f enberger , 2008 ####

#### ####

#### Desc r ip t i on : ####

#### This program con s t ru c t s a l l p o s s i b l e 2�dim . subcomplexes o f ####

10 #### Ske l 2 (24� c e l l ) f u l f i l l i n g the pseudomanifold �property and induc ing ####

#### a Hamiltonian or s p l i t ( s i n gu l a r vertex , two 4� c y c l e s ) path in the ####

#### l i n k o f each ver tex o f the 24� c e l l , i . e . a l l Hamiltonian ( pinch po int ) ####

#### su r f a c e s o f Ske l 2 (24� c e l l ) . ####

#### ####

15 #### This i s accompl ished by the f o l l ow i n g procedure : ####

#### ####

#### The algor i thm r e c u r s i v e l y t r i e s a l l p o s s i b i l i t i e s to k i l l 32 o f the 96 ####

#### t r i a n g l e s Ske l 2 (24� c e l l ) r e s p e c t i n g the r e s t r i c t i o n s metioned above ####

#### y i e l d i n g 2d complexes with Euler �Cha r a c t e r i s t i c \Chi=�8. ####

20 #### ####

#### Remember that f o r each ver tex v the l i n k lk (v ) i s a cube and that a ####

#### Hamiltonian su r f a c e y i e l d s hami l tonian paths in the l i n k s o f a l l ####

#### ve r t i c e s o f the 24� c e l l . In the cube there only e x i s t s one Hamil� ####

#### tonian path modulo symmetries . ####

25 #### ####

#### Since pp� s u r f a c e s are cons ide r ed the program a l s o dea l s with the ####

#### case o f two d i s j o i n t c y c l e s o f l ength 4 in lk (v ) . Note that t h i s i s ####

#### the only va l i d s p l i t t i n g o f the cube in to d i s j o i n t paths in t h i s case . ####

#### ####
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30 #### In any o f the two cases , in each ver tex f i g u r e ( a cube ) , e i gh t edges ####

#### ( i d e n t i f i e d with t r i a n g l e s o f Ske l 2 (24� c e l l ) ) be long to the complex ####

#### and four do not belong to the complex . These 4 t r i a n g l e s are marked as ####

#### ” k i l l e d ” , ( not part o f the su r f a c e ) the other e i gh t are marked as ####

#### ” f i x ed ” ( part o f the su r f a c e ) . Thus , a Hamiltonian su r f a c e can be ob� ####

35 #### ta ined by con s t ru c t i ng Hamiltonian or s p l i t paths in the ver tex f i � ####

#### gures o f a l l v e r t i c e s and look ing at the i d e n t i f i e d t r i a n g l e s o f the ####

#### edges o f a l l those paths . ####

#### ####

#### The algor i thm works in a s t epwi s e manner p ro c e s s i ng one ver tex l i n k ####

40 #### a f t e r the other . ####

#### ####

#### In the f i r s t s tep a path in the l i n k o f ver tex 1 i s f i x ed to be o f ####

#### Hamiltonian or s p l i t type and then the f i r s t f our t r i a n g l e s are ####

#### k i l l e d , the f i r s t e i gh t f i x e d . As each edge o f Ske l 2 (24�Ce l l ) i s con� ####

45 #### ta ined in exac t l y three t r i a n g l e s o f Ske l 2 (24�Ce l l ) and f o r a ####

#### ( pseudo ) su r f a c e t h i s number has to be two f o r each k i l l e d t r i a n g l e one ####

#### can now f i nd two t r i a n g l e s that must be inc luded in the ( pseudo ) ####

#### sur f a c e . These t r i a n g l e s now f i x edges in the l i n k s o f other v e r t i c e s ####

#### ( so c a l l e d ” a s s o c i a t ed ” v e r t i c e s ) , reduc ing the number o f p o s s i b i l i t i e s####

50 #### of Hamiltonian or s p l i t paths in the l i n k s o f those v e r t i c e s . For the ####

#### re s t o f the l i n k s a l l p o s s i b i l i t i e s o f Hamiltonian and s p l i t paths ####

#### in the l i n k s are tes ted , tak ing in to account the growing number o f ####

#### r e s t r i c t i o n s due to the f i x ed and k i l l e d t r i a n g l e s caused by the pre� ####

#### vious s t ep s . I f i t i s impos s ib l e to f i nd a Hamiltonian path in lk (v ) ####

55 #### of a ver tex v due to the k i l l e d and f i x ed edges c on f i gu r a t i on in lk (v ) ####

#### induced by the prev ious s t ep s the con s t ruc t i on w i l l not r e s u l t in a ####

#### sur f a c e and can be d i s ca rded . ####

#### ####

#### The algor i thm makes use o f t h i s f a c t and sy s t ema t i c a l l y enumerates ####

60 #### a l l p o s s i b i l i t i e s to cons t ruc t a Hamiltonian ( pseudo ) su r f a c e as ####

#### subcomplex o f Ske l 2 (24� c e l l ) us ing a backtrack ing a lgor i thm . ####

#### ####

#### The program produces t ex tua l output to be ab le to see what the algo � ####

#### rihm i s computing . The output i s p r in ted to the s c r e en and a l s o ####

65 #### wri t t en to the f i l e ” s u r f a c e 2 4 c e l l . l og ” ####

#### ####

### Al l found complexes are saved to output f i l e s o f the form ####

#### ”psurf24 X . dat ” , where X i s a cons e cu t i v e number s t a r t i n g at 1 . ####

#### These f i l e s are a l l in GAP format and conta in the l i s t o f ####

70 #### s imp l i c e s o f the complex in the va r i ab l e complex : = . . . and a l i s t o f ####

#### the l i n k s f o r a l l v e r t i c e s 1�24 in the va r i ab l e l i n k s : = . . . �� here ####

#### l i n k s [1 ]= lk ( 1 ) , e t c . ####

#### ####

################################################################################

75 #### ####

#### Tested with GAP Vers ion 4 . 4 . 9 ####

#### ####
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################################################################################

################################################################################

80

LogTo( ” s u r f a c e 2 4 c e l l . l og ” ) ;

################################################################################

################################################################################

85 #### GLOBAL VARIABLES ####

################################################################################

################################################################################

### t r i g : the 96 t r i a n g l e s o f s k e l 2 (24� c e l l )

90 t r i g :=

[ [ 1 , 2 , 3 ] , [ 1 , 2 , 4 ] , [ 1 , 2 , 5 ] , [ 1 , 3 , 6 ] , [ 1 , 3 , 7 ] ,

[ 1 , 4 , 6 ] , [ 1 , 4 , 9 ] , [ 1 , 5 , 7 ] , [ 1 , 5 , 9 ] , [ 1 , 6 , 11 ] ,

[ 1 , 7 , 11 ] , [ 1 , 9 , 11 ] , [ 2 , 3 , 8 ] , [ 2 , 3 , 10 ] , [ 2 , 4 , 8 ] ,

[ 2 , 4 , 12 ] , [ 2 , 5 , 10 ] , [ 2 , 5 , 12 ] , [ 2 , 8 , 13 ] , [ 2 , 10 , 13 ] ,

95 [ 2 , 12 , 13 ] , [ 3 , 6 , 8 ] , [ 3 , 6 , 14 ] , [ 3 , 7 , 10 ] , [ 3 , 7 , 14 ] ,

[ 3 , 8 , 15 ] , [ 3 , 10 , 15 ] , [ 3 , 14 , 15 ] , [ 4 , 6 , 8 ] , [ 4 , 6 , 16 ] ,

[ 4 , 8 , 17 ] , [ 4 , 9 , 12 ] , [ 4 , 9 , 16 ] , [ 4 , 12 , 17 ] , [ 4 , 16 , 17 ] ,

[ 5 , 7 , 10 ] , [ 5 , 7 , 18 ] , [ 5 , 9 , 12 ] , [ 5 , 9 , 18 ] , [ 5 , 10 , 19 ] ,

[ 5 , 12 , 19 ] , [ 5 , 18 , 19 ] , [ 6 , 8 , 20 ] , [ 6 , 11 , 14 ] , [ 6 , 11 , 16 ] ,

100 [ 6 , 14 , 20 ] , [ 6 , 16 , 20 ] , [ 7 , 10 , 21 ] , [ 7 , 11 , 14 ] , [ 7 , 11 , 18 ] ,

[ 7 , 14 , 21 ] , [ 7 , 18 , 21 ] , [ 8 , 13 , 15 ] , [ 8 , 13 , 17 ] , [ 8 , 15 , 20 ] ,

[ 8 , 17 , 20 ] , [ 9 , 11 , 16 ] , [ 9 , 11 , 18 ] , [ 9 , 12 , 22 ] , [ 9 , 16 , 22 ] ,

[ 9 , 18 , 22 ] , [ 10 , 13 , 15 ] , [ 10 , 13 , 19 ] , [ 10 , 15 , 21 ] ,

[ 10 , 19 , 21 ] , [ 11 , 14 , 23 ] , [ 11 , 16 , 23 ] , [ 11 , 18 , 23 ] ,

105 [ 12 , 13 , 17 ] , [ 12 , 13 , 19 ] , [ 12 , 17 , 22 ] , [ 12 , 19 , 22 ] ,

[ 13 , 15 , 24 ] , [ 13 , 17 , 24 ] , [ 13 , 19 , 24 ] , [ 14 , 15 , 20 ] ,

[ 14 , 15 , 21 ] , [ 14 , 20 , 23 ] , [ 14 , 21 , 23 ] , [ 15 , 20 , 24 ] ,

[ 15 , 21 , 24 ] , [ 16 , 17 , 20 ] , [ 16 , 17 , 22 ] , [ 16 , 20 , 23 ] ,

[ 16 , 22 , 23 ] , [ 17 , 20 , 24 ] , [ 17 , 22 , 24 ] , [ 18 , 19 , 21 ] ,

110 [ 18 , 19 , 22 ] , [ 18 , 21 , 23 ] , [ 18 , 22 , 23 ] , [ 19 , 21 , 24 ] ,

[ 19 , 22 , 24 ] , [ 20 , 23 , 24 ] , [ 21 , 23 , 24 ] , [ 22 , 23 , 24 ] ] ;

### edges : the 96 edges o f o f s k e l 2 (24� c e l l )

115 edges :=[ [ 1 , 2 ] , [ 1 , 3 ] , [ 1 , 4 ] , [ 1 , 5 ] , [ 1 , 6 ] , [ 1 , 7 ] , [ 1 , 9 ] ,

[ 1 , 11 ] , [ 2 , 3 ] , [ 2 , 4 ] , [ 2 , 5 ] , [ 2 , 8 ] , [ 2 , 10 ] , [ 2 , 12 ] ,

[ 2 , 13 ] , [ 3 , 6 ] , [ 3 , 7 ] , [ 3 , 8 ] , [ 3 , 10 ] , [ 3 , 14 ] , [ 3 , 15 ] ,

[ 4 , 6 ] , [ 4 , 8 ] , [ 4 , 9 ] , [ 4 , 12 ] , [ 4 , 16 ] , [ 4 , 17 ] , [ 5 , 7 ] ,

[ 5 , 9 ] , [ 5 , 10 ] , [ 5 , 12 ] , [ 5 , 18 ] , [ 5 , 19 ] , [ 6 , 8 ] , [ 6 , 11 ] ,

120 [ 6 , 14 ] , [ 6 , 16 ] , [ 6 , 20 ] , [ 7 , 10 ] , [ 7 , 11 ] , [ 7 , 14 ] ,

[ 7 , 18 ] , [ 7 , 21 ] , [ 8 , 13 ] , [ 8 , 15 ] , [ 8 , 17 ] , [ 8 , 20 ] ,

[ 9 , 11 ] , [ 9 , 12 ] , [ 9 , 16 ] , [ 9 , 18 ] , [ 9 , 22 ] , [ 10 , 13 ] ,

[ 10 , 15 ] , [ 10 , 19 ] , [ 10 , 21 ] , [ 11 , 14 ] , [ 11 , 16 ] , [ 11 , 18 ] ,

[ 11 , 23 ] , [ 12 , 13 ] , [ 12 , 17 ] , [ 12 , 19 ] , [ 12 , 22 ] , [ 13 , 15 ] ,

125 [ 13 , 17 ] , [ 13 , 19 ] , [ 13 , 24 ] , [ 14 , 15 ] , [ 14 , 20 ] , [ 14 , 21 ] ,
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[ 14 , 23 ] , [ 15 , 20 ] , [ 15 , 21 ] , [ 15 , 24 ] , [ 16 , 17 ] , [ 16 , 20 ] ,

[ 16 , 22 ] , [ 16 , 23 ] , [ 17 , 20 ] , [ 17 , 22 ] , [ 17 , 24 ] , [ 18 , 19 ] ,

[ 18 , 21 ] , [ 18 , 22 ] , [ 18 , 23 ] , [ 19 , 21 ] , [ 19 , 22 ] , [ 19 , 24 ] ,

[ 20 , 23 ] , [ 20 , 24 ] , [ 21 , 23 ] , [ 21 , 24 ] , [ 22 , 23 ] , [ 22 , 24 ] ,

130 [ 23 , 24 ] ] ;

### g loba l v a r i a b l e s needed by the backtrack ing a lgor i thm

numki l led :=0;

135 mat : = [ ] ;

k i l l e d r ows : = [ ] ;

numedget : = [ ] ;

minrow :=1;

backt racks ta tusvec : = [ ] ;

140 s u r f c o l l e c t i o n : = [ ] ;

numsurfs :=0;

s t a r t c a l l i d x :=1;

s t a r t c a l l i d xd ep t h : = [ ] ;

s ta r t row : = [ ] ;

145 t op l i nk : = [ ] ;

l i n k t r i g : = [ ] ;

l i n k t r i g i d x : = [ ] ;

################################################################################

150 ################################################################################

#### FUNCTIONS ####

################################################################################

################################################################################

155 ### computeLinks ###############################################################

# retu rn s the l i n k o f every ver tex in the g iven complex

#

computeLinks := func t i on ( complex )

l o c a l i , s implex , l inkSimplex , l i n k ;

160

l i n k : = [ ] ;

for i in [ 1 . . 2 4 ] do

l i n k [ i ] : = [ ] ;

165 for s implex in complex do

i f i in s implex then

l inkS implex :=ShallowCopy ( s implex ) ;

RemoveSet ( l inkSimplex , i ) ;

AddSet ( l i n k [ i ] , l inkS implex ) ;

170 f i ;

od ;

od ;

r e turn l i n k ;
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end ;

175

### getTr iang lesEdge ###########################################################

# retu rn s a l i s t o f t r i a n g l e s a g iven edge i s conta ined in

#

180 getTr iang lesEdge := func t i on ( edge )

l o c a l t , l i s t ;

l i s t : = [ ] ;

for t in t r i g do

i f ( I sSubse t ( t , edge ) ) then

185 Add( l i s t , t ) ;

f i ;

od ;

r e turn l i s t ;

end ;

190

### getKi l l edLinkEdges #########################################################

# retu rn s the l i s t o f edges that are k i l l e d in l i n k lk (v )

#

195 getKi l l edLinkEdges := func t i on (v )

l o c a l e , t , idx , k i l l e d e d g e s ;

k i l l e d e d g e s : = [ ] ;

for e in t op l i nk [ v ] do

t :=Union ( e , [ v ] ) ; #t r i a n g l e that c o n s i s t s o f edge in l i n k+inner ver tex

200 idx := Pos i t i on ( t r i g , t ) ;

i f ( idx=f a i l ) then #should never happen

Pr int ( ” e r r o r in getKi l l edL inkEges : t r i a n g l e ” , t , ” not found !\n” ) ;

r e turn [ ] ;

205 f i ;

i f ( k i l l e d r ow s [ idx ]=1) then

Add( k i l l e d edg e s , e ) ; #k i l l e d edge

f i ;

210 od ;

r e turn k i l l e d e d g e s ;

end ;

215 ### getGraphCycle ##############################################################

# determines , whether a g iven graph ( as subset o f the graph o f a cube )

# has a cy c l e or not

#

getGraphCycle := func t i on ( curv , l a s tv , cyc , graph )

220 l o c a l poss , hascyc , e , nv ;

157



Appendix D. Enumeration algorithm for the 24-cell

poss := F i l t e r e d ( graph , x�>(curv in x and not l a s t v in x ) ) ;

hascyc :=0;

225 for e in poss do

nv:= D i f f e r e n c e ( e , [ curv ] ) [ 1 ] ;

i f ( cyc [ nv ]=1) then

r e turn 1 ; #found cyc l e

f i ;

230 od ;

for e in poss do

nv:= D i f f e r e n c e ( e , [ curv ] ) [ 1 ] ;

cyc [ nv ] :=1 ;

235 i f ( getGraphCycle (nv , curv , cyc , graph )=1) then

r e turn 1 ; #found cyc l e

f i ;

cyc [ nv ] :=0 ;

od ;

240

r e turn 0 ; #no cyc l e

end ;

245 ### pathHasForbiddenVert ices ###################################################

# determines , whether a g iven path has ” fo rb idden ” v e r t i c e s , i . e . v e r t i c e s

# with a degree o f 3

#

pathHasForbiddenVert ices := func t i on ( path )

250 l o c a l deg , e ;

deg := L i s tWi th Id en t i c a lEn t r i e s ( 2 4 , 0 ) ;

for e in path do

deg [ e [ 1 ] ] : = deg [ e [ 1 ] ]+ 1 ;

255 deg [ e [ 2 ] ] : = deg [ e [ 2 ] ]+ 1 ;

od ;

i f (3 in deg ) then

r e turn 1 ;

260 else

r e turn 0 ;

f i ;

end ;

265

### getHamiltonBacktrack #######################################################

# he lpe r func t i on f o r getHamiltonPaths � backtrack ing a lgor i thm that computes

# a l l p o s s i b l e hamilton paths in a cube conta in ing the path p

#
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270 getHamiltonBacktrack := func t i on (v , curv , markedv , path , a l l p )

l o c a l possnext , nv , e , ee , cyc , cur ;

#found hami ltonian path in the cube

i f ( Length ( path )=8) then

275 AddSet ( a l lp , ShallowCopy ( path ) ) ;

r e turn ;

f i ;

#c a l c u l a t e p o s s i b l e next v e r t i c e s ( edges )

280 possnext : = [ ] ;

for nv in [ 1 . . 2 4 ] do

e :=Set ( [ curv , nv ] ) ;

i f ( e in t op l i nk [ v ] and not e in path ) then

285 #cyc l e & branch de t e c t i on

cyc := L i s tWi th Id en t i c a lEn t r i e s ( 2 4 , 0 ) ;

cyc [ curv ] := cyc [ curv ]+1;

cyc [ nv ] := cyc [ nv ]+1;

for ee in path do

290 cyc [ ee [ 1 ] ] : = cyc [ ee [ 1 ] ] + 1 ;

cyc [ ee [ 2 ] ] : = cyc [ ee [ 2 ] ] + 1 ;

od ;

i f (3 in cyc ) then

295 #found cy c l e

continue ;

f i ;

cyc := L i s tWi th Id en t i c a lEn t r i e s ( 2 4 , 0 ) ;

300 cyc [ curv ] :=1 ;

cyc [ nv ] :=1 ;

i f ( getGraphCycle ( curv , nv , cyc , Union ( path , [ Set ( [ curv , nv ] ) ] ) )=1 ) then

i f ( Length ( path )=7) then

AddSet ( a l lp , Union ( path , [ e ] ) ) ;

305 f i ;

continue ; #no cy c l e o f l ength < 8 al lowed

f i ;

AddSet ( possnext , nv ) ;

310 f i ;

od ;

#r e cu r s e f o r next p o s s i b i l i t i e s

for nv in possnext do

315 markedv [ nv ] :=1 ;

AddSet ( path , Set ( [ curv , nv ] ) ) ;
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getHamiltonBacktrack (v , nv , markedv , path , a l l p ) ;

RemoveSet ( path , Set ( [ curv , nv ] ) ) ;

320 markedv [ nv ] :=0 ;

od ;

end ;

325 ### getHamiltonPaths ###########################################################

# retu rn s a l l Hamiltonian paths in the cube lk (v ) that conta in the g iven path

# f i x e in lk (v ) . r e tu rn s [ ] i f no such paths e x i s t

#

getHamiltonPaths := func t i on (v , f i x e )

330 l o c a l markedv , e , a l l p , p , cyc ;

#check f o r fo rb idden v e r t i c e s o f f i x e

i f ( pathHasForbiddenVert ices ( f i x e )=1) then

r e turn [ ] ; #no hamilton path p o s s i b l e

335 f i ;

#check f o r c y c l e s o f f i x e

cyc := L i s tWi th Id en t i c a lEn t r i e s ( 2 4 , 0 ) ;

p:=ShallowCopy ( f i x e ) ;

340 cyc [ p [ 1 ] [ 1 ] ] : = 1 ;

cyc [ p [ 1 ] [ 2 ] ] : = 1 ;

i f ( getGraphCycle (p [ 1 ] [ 1 ] , p [ 1 ] [ 2 ] , cyc , p)=1) then

r e turn [ ] ; #no hamilton path p o s s i b l e

f i ;

345

#mark v e r t i c e s o f f i r s t edge o f f i x e

markedv:= L i s tWi th Id en t i c a lEn t r i e s ( 2 4 , 0 ) ;

markedv [ f i x e [ 1 ] [ 1 ] ] : = 1 ;

markedv [ f i x e [ 1 ] [ 2 ] ] : = 1 ;

350

#f i x f i r s t working edge , then s t a r t backtrack

a l l p : = [ ] ;

p :=[ f i x e [ 1 ] ] ;

getHamiltonBacktrack (v , f i x e [ 1 ] [ 1 ] , markedv , p , a l l p ) ;

355

#now return only re turn paths that have f i x e as subset

re turn F i l t e r e d ( a l lp , x�>I sSubse t (x , Set ( f i x e ) ) ) ;

end ;

360

### carte s i anEdges #############################################################

# he lpe r funct ion , computes the c a r t e s i a n product o f a g iven s e t o f edges .

# re tu rn s the edges de f ined v ia the c a r t e s i a n product o f the ver tex s e t s o f the

# parameter edges

365 #
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car t e s i anEdges := func t i on ( edges )

l o c a l a l l , a l l s , c ;

a l l : = [ ] ;

370 for c in Combinations ( edges , 2 ) do

UniteSet ( a l l , Cartes ian ( c ) ) ;

od ;

a l l s : = [ ] ;

375 for c in a l l do

i f ( Length ( Set ( c ))<2) then continue ; f i ;

AddSet ( a l l s , Set ( c ) ) ;

od ;

380 r e turn Union ( a l l s , edges ) ;

end ;

### getSp l i tPath s ##############################################################

385 # retu rn s a l l p o s s i b l e ” s p l i t paths ” in the l i n k lk (v ) o f a ver tex v conta in ing

# the s e t o f edges f i x e as subset .

# here a ” s p l i t path” i s a s e t o f two d i s j o i n t c y c l e s o f l ength 4 in the graph

# of a cube

#

390 ge tSp l i tPath s := func t i on (v , f i x e )

l o c a l i , e , f , vert , vert2 , e1 , e2 , cand , overt , v e r t i c e s , paths , edges , a l l cand , f a i l e d ;

#no path p o s s i b l e

i f ( Length ( f i x e )>8 or pathHasForbiddenVert ices ( f i x e )=1) then

395 r e turn [ ] ;

f i ;

#check whether edges i n t e r s e c t in one ver tex

e1 : = [ ] ;

400 e2 : = [ ] ;

v e r t :=0;

for e in f i x e do

for f in f i x e do

i f ( e=f ) then continue ; f i ;

405 i f ( I n t e r s e c t i o n ( e , f )<>[]) then

ver t := I n t e r s e c t i o n ( e , f ) [ 1 ] ;

e1 :=e ;

e2 := f ;

break ;

410 f i ;

od ;

i f ( vert<>0) then break ; f i ;

od ;
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415 #4 cas e s

i f ( vert<>0) then

#f i r s t case � two edges i n t e r s e c t in one ver tex

#f i nd 4 th ver tex

cand:= F i l t e r e d ( t op l i nk [ v ] ,

420 x�> I n t e r s e c t i o n (x , e1 )<>[] and x<>e1 and x<>e2 ) ;

UniteSet ( cand , F i l t e r e d ( t op l i nk [ v ] ,

x�> I n t e r s e c t i o n (x , e2 )<>[] and x<>e1 and x<>e2 ) ) ;

ver t2 : = [ ] ;

425 for e in cand do

for f in cand do

i f ( f=e ) then continue ; f i ;

i f ( Length ( I n t e r s e c t i o n ( e , f ))=1) then

UniteSet ( vert2 , I n t e r s e c t i o n ( e , f ) ) ;

430 f i ;

od ;

od ;

#4 v e r t i c e s on one s i d e

435 v e r t i c e s :=Union ( e1 , e2 ) ;

UniteSet ( v e r t i c e s , Union ( [ ve r t ] , ve r t2 ) ) ;

#complementary v e r t i c e s

over t : = [ ] ;

440 for e in t op l i nk [ v ] do

UniteSet ( overt , e ) ;

od ;

over t := D i f f e r e n c e ( overt , v e r t i c e s ) ;

445

#check whether the re e x i s t edges l i n k i n g two s i d e s �> f o rb idden

f a i l e d :=0;

for e in f i x e do

i f ( ( e [ 1 ] in v e r t i c e s and e [ 2 ] in over t ) or

450 ( e [ 2 ] in v e r t i c e s and e [ 1 ] in over t ) ) then

f a i l e d :=1;

f i ;

od ;

455 i f ( f a i l e d =1) then

r e turn [ ] ;

else

#two 4� c y c l e s

cand:= F i l t e r e d ( t op l i nk [ v ] , x�>I sSubse t ( v e r t i c e s , x ) ) ;

460 UniteSet ( cand , F i l t e r e d ( t op l i nk [ v ] , x�>I sSubse t ( overt , x ) ) ) ;

r e turn [ cand ] ;
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f i ;

else

#second to f o r th case �� edges d i s j o i n t

465 paths := F i l t e r e d ( t op l i nk [ v ] , x�>Length ( I n t e r s e c t i o n (x , f i x e [ 1 ] ) )= 1 ) ;

edges : = [ ] ;

for e in car t e s i anEdges ( paths ) do

i f ( e in t op l i nk [ v ] and e<>f i x e [ 1 ] and

470 I n t e r s e c t i o n ( e , f i x e [ 1 ] ) = [ ] ) then

AddSet ( edges , e ) ;

f i ;

od ;

475 #two po s s i b l e o r i e n t a t i o n s

a l l c and : = [ ] ;

for i in [ 1 . . 2 ] do

#4 v e r t i c e s on one s i d e

480 v e r t i c e s :=Union ( f i x e [ 1 ] , edges [ i ] ) ;

#complementary v e r t i c e s

over t : = [ ] ;

for e in t op l i nk [ v ] do

485 UniteSet ( overt , e ) ;

od ;

over t := D i f f e r e n c e ( overt , v e r t i c e s ) ;

490 #check whether the re e x i s t edges l i n k i n g two s i d e s �> f o rb idden

f a i l e d :=0;

for e in f i x e do

i f ( ( e [ 1 ] in v e r t i c e s and e [ 2 ] in over t ) or

( e [ 2 ] in v e r t i c e s and e [ 1 ] in over t ) ) then

495 f a i l e d :=1;

f i ;

od ;

i f ( f a i l e d =1) then

500 continue ;

else

#two 4� c y c l e s

cand:= F i l t e r e d ( t op l i nk [ v ] , x�>I sSubse t ( v e r t i c e s , x ) ) ;

UniteSet ( cand , F i l t e r e d ( t op l i nk [ v ] , x�>I sSubse t ( overt , x ) ) ) ;

505 AddSet ( a l l cand , cand ) ;

f i ;

od ;

r e turn a l l c and ;
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510 f i ;

end ;

### getSp l i tPath s ##############################################################

515 # ca l l e d by the g l oba l backtrack ing a lgor i thm when a ( pseudo �) mani fo ld i s

# found . here i t i s saved to the g l oba l l i s t s u r f c o l l e c t i o n .

# The number o f found complexes in t o t a l i s saved to numsurf

#

save su r f := func t i on ( )

520 l o c a l i , sur f , f i l e , l i nk s , l , hom ;

s u r f : = [ ] ;

for i in [ 1 . . Length ( t r i g ) ] do

i f ( k i l l e d r ow s [ i ]=1) then continue ; f i ;

AddSet ( sur f , t r i g [ i ] ) ;

525 od ;

i f ( s u r f in s u r f c o l l e c t i o n ) then

r e turn ; #no doubles

f i ;

530

numsurfs :=numsurfs+1;

Add( s u r f c o l l e c t i o n , ShallowCopy ( s u r f ) ) ;

f i l e :=Concatenation ( [ ” p su r f 24 ” , S t r ing ( numsurfs ) , ” . dat” ] ) ;

535 PrintTo ( f i l e , ”complex :=” , sur f , ” ; ; \ n\n” ) ;

l i n k s :=computeLinks ( s u r f ) ;

AppendTo( f i l e , ” l i n k s :=” , l i nk s , ” ; ; \ n\n” ) ;

hom : = [ ] ;

540 for l in [ 1 . . Length ( l i n k s ) ] do

#d i s ab l e the f o l l ow i n g comment to enable

#homology computation f o r the l i n k s

#AppendTo( f i l e ,”#” , l , ” � ” , Simpl ic ia lHomology ( l i n k s [ l ] ) , ” \ n ” ) ;

545 od ;

end ;

550 ### isVal idPath ################################################################

# he lpe r func t i on f o r k i l lT r i ang l e sL i nk , determines whether a g iven path p in

# the l i n k lk (v ) o f a ver tex v i s va l i d with r e sp e c t to the a l r eady k i l l e d and

# f i x ed t r i a n g l e s �� i . e . i t must not conta in k i l l e d t r i a n g l e s and must conta in

# a l l f i x ed t r i a n g l e s r e l a t e d to that path .

555 #

isVal idPath := func t i on (v , p)

l o c a l e , t , pt , ptc ;
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pt : = [ ] ;

560 for e in p do

t := Pos i t i on ( t r i g , Union ( e , [ v ] ) ) ;

AddSet ( pt , t ) ;

i f ( k i l l e d r ow s [ t ]=1) then

565 r e turn fa l se ;

f i ;

od ;

ptc := D i f f e r e n c e ( l i n k t r i g i d x [ v ] , pt ) ;

570

for t in ptc do

i f ( k i l l e d r ow s [ t ]=2) then

r e turn fa l se ;

f i ;

575 od ;

r e turn true ;

end ;

580

### k i l lT r i a n g l e s L i n k ##########################################################

# he lpe r func t i on f o r getNextLink . enumerates a l l p o s s i b i l i t i e s o f s p l i t paths

# and Hamiltonian paths in the l i n k lk (v ) o f a ver tex v r e sp e c t i n g the s e t o f

# f i x ed edges f i x ed edge s that have to be part o f the paths .

585 # retu rn s the a l i s t o f t r i a n g l e s to be k i l l e d and one o f t r i a n g l e s to be f i x ed

# f o r the idx�th path o f a l l those paths or [ ] i f e i t h e r no such paths e x i s t s

# or the the number o f such paths i s <idx

#

# note : modulo symmetries o f the cube there i s only one p o s s i b i l i t y f o r a

590 # Hamiltonian path in the cube :

#

# h . g

# | /

# | /

595 # e . / f

# | |
# | d | c

# | /

# | /

600 # a | / b

#

# s im i l a r l y , the re i s only one p o s s i b i l i t y f o r a s p l i t path :

#

# h . g

605 # / /
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# / /

# e/ / f

#

# d c

610 # / /

# / /

# a/ /b

#

#

615 k i l l T r i a n g l e s L i n k := func t i on (v , f i xededges , idx )

l o c a l hpaths , spaths , a l l pa th s , e , t o k i l l , t o f i x ;

#get a l l hami l tonian paths and a l l s p l i t paths r e s p e c t i n g f i x ed edge s

hpaths :=getHamiltonPaths (v , f i x ed edge s ) ;

620 spaths := ge tSp l i tPa th s (v , f i x ededge s ) ;

a l l p a t h s :=Union ( hpaths , spaths ) ;

#ex t r a c t va l i d paths

625 a l l p a t h s := F i l t e r e d ( a l l pa th s , x�>i sVa l idPath (v , x ) ) ;

i f ( idx>Length ( a l l p a t h s ) ) then

r e turn [ ] ;

f i ;

630

#cons t ruc t s e t s o f k i l l e d & f i x ed t r i a n g l e s

t o k i l l : = [ ] ;

for e in Di f f e r e n c e ( t op l i nk [ v ] , a l l p a t h s [ idx ] ) do

AddSet ( t o k i l l , Union ( e , [ v ] ) ) ;

635 od ;

t o f i x : = [ ] ;

for e in a l l p a t h s [ idx ] do

AddSet ( t o f i x , Union ( e , [ v ] ) ) ;

640 od ;

i f ( Length ( t o k i l l )<>4) then

#should never happen

Pr int ( ” k i l l T r i a n g l e sL i n k : e r r o r ! l ength t o k i l l=” , Length ( t o k i l l ) , ” !\n” ) ;

645 f i ;

#return l i s t o f t r i a n g l e s to be k i l l e d

re turn [ t o k i l l , t o f i x ] ;

end ;

650

### getPuzz leVertex ############################################################

# he lpe r func t i on f o r constructComplexBacktrack .
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#

655 # l e t lk ( v ) be an a l r eady proce s sed ver tex l i n k with 4 k i l l e d , 8 f i x e d edges .

# an a s s o c i a t ed ver tex w i i s a vertex , whose l i n k conta in s at l e a s t 2 edges

# that are a l r eady k i l l e d in lk ( v ) and t h e r e f o r e have to be conta ined in

# lk ( w i ) .

#

660 # the func t i on r e tu rn s the idx�th a s s o c i a t ed ver tex w i o f v along with edges

# that are k i l l e d in lk ( v ) and must be conta ined in lk ( w i )

#

# note that a t r i angu l a t ed ( pseudo ) su r f a c e f u l f i l l s the pm�property , i . e . every

# edge e i s conta ined in exac t l y two t r i a n g l e s . I f one t r i a n g l e in t r i g

665 # conta in ing an edge e i s a l r eady k i l l e d exac t l y two t r i a n g l e s that conta in e

# are l e f t and both have to be in the su r f a c e ( f o r a Hamiltonian su r f a c e

# conta in s every edge o f the 96 edges o f the 24 c e l l ) .

#

getPuzz leVertex := func t i on (v , k i l l e d edg e s , idx )

670 l o c a l e , e1 , e2 , t , tt , l inkedv , i , j , l i d x ;

l i d x := idx ;

#f o r a l l p a i r s o f k i l l e d edges

for e1 in [ 1 . . Length ( k i l l e d e d g e s ) �1] do

675 for e2 in [ e1 +1. . Length ( k i l l e d e d g e s ) ] do

#get a l l t r i a n g l e s that in c lude e1 or e2

t : = [ ] ;

t [ 1 ] := getTr iang lesEdge ( k i l l e d e d g e s [ e1 ] ) ;

t [ 2 ] := getTr iang lesEdge ( k i l l e d e d g e s [ e2 ] ) ;

680

#ext ra c t l i nked v e r t i c e s

e :=[ e1 , e2 ] ;

l i nkedv : = [ ] ;

for i in [ 1 . . 2 ] do

685 l i nkedv [ i ] : = [ ] ;

#f o r a l l t r i a n g l e s that in c lude e i ( i = 1 ,2)

for t t in t [ i ] do

i f ( v in t t ) then

continue ; #sk ip t r i a n g l e s in cur rent l i n k

690 f i ;

UniteSet ( l inkedv [ i ] , D i f f e r e n c e ( tt , k i l l e d e d g e s [ e [ i ] ] ) ) ;

od ;

od ;

695 #look f o r ver tex that i s l i nked at two edges

for i in [ 1 . . Length ( l inkedv [ 1 ] ) ] do

j := Pos i t i on ( l inkedv [ 2 ] , l i nkedv [ 1 ] [ i ] ) ;

i f ( j<>f a i l ) then

l i d x := l idx �1;

700 #return idx�th a s s o c i a t ed ver tex

i f ( l i d x =0) then
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r e turn

[ l inkedv [ 1 ] [ i ] , [ k i l l e d e d g e s [ e1 ] , k i l l e d e d g e s [ e2 ] ] ] ;

f i ;

705 f i ;

od ;

od ;

od ;

r e turn [ ] ; #no more a s s o c i a t ed v e r t i c e s

710 end ;

### getKi l l edLinkEdges #########################################################

# he lpe r func t i on f o r getNextLink . r e tu rn s the l i s t o f edges that

715 # are k i l l e d in l i n k lk (v ) o f ver tex v

#

getKi l l edLinkEdges := func t i on (v )

l o c a l e , t , idx , k i l l e d e d g e s ;

k i l l e d e d g e s : = [ ] ;

720 for e in t op l i nk [ v ] do

t :=Union ( e , [ v ] ) ; #t r i a n g l e that c o n s i s t s o f edge in l i n k + inner ver tex

idx := Pos i t i on ( t r i g , t ) ;

i f ( idx=f a i l ) then

725 #should not happen

Pr int ( ” e r r o r in getKi l l edL inkEges : e r r o r ! t r i a n g l e ” ,

t , ” not found !\n” ) ;

r e turn [ ] ;

f i ;

730

i f ( k i l l e d r ow s [ idx ]=1) then

#k i l l e d edge

Add( k i l l e d edg e s , e ) ;

f i ;

735 od ;

r e turn k i l l e d e d g e s ;

end ;

740 ### getNextLink ################################################################

# he lpe r func t i on f o r constructComplexBacktrack . computes a l l p o s s i b l i l i t i e s

# o f k i l l i n g edges in the l i n k s o f ” a s s o c i a t ed ” v e r t i c e s o f the ver tex v .

# see getPuzz leVertex f o r a s s o c i a t ed ver tex .

# the idx�th p o s s i b i l i t y i s chosen and returned .

745 #

getNextLink := func t i on (v , idx )

l o c a l k i l l e d g e , l idx , j , i , poss , poss2 , cur , cur2 , t , t idx , numk , countk ;

#get k i l l e d edges in lk (v ) v ia g l oba l k i l l e d r ow s
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750 k i l l e d g e := getKi l l edLinkEdges ( v ) ;

#s i n c e v was a l r eady processed , exac t l y four edges o f l k ( v ) are be

#marked as k i l l e d edges

i f ( Length ( k i l l e d g e )<>4) then

755 #should never happen

Pr int ( ” g e tNex tPo s s i b i l i t y : e r r o r ! ve r tex ” ,v , ” not a c t i v e !\n” ) ;

r e turn [ ] ;

f i ;

760 poss : = [ ] ;

l i d x :=1;

#re tu rn s l idx �th ” a s s o c i a t ed ” ver tex ( cur [ l i d x ] [ 1 ] ) ( having at l e a s t

#2 k i l l e d edges in i t s l i n k

#and two k i l l e d edges in ver tex l i n k lk ( cur [ l i d x ] [ 1 ] ) ( cur [ l i d x ] [ 2 ] )

765 cur := getPuzz leVertex (v , k i l l e d g e , l i d x ) ;

while ( cur <>[]) do

AddSet ( poss , cur ) ;

l i d x := l i d x +1;

cur := getPuzz leVertex (v , k i l l e d g e , l i d x ) ;

770 od ;

#S i z e ( poss ) = number o f a s s o c i a t ed v e r t i c e s

i f ( Length ( poss )=0) then

775 #algor i thm cons i s t ency check

countk := L i s tWi th Id en t i c a lEn t r i e s ( 2 4 , 0 ) ;

for i in [ 1 . . 2 4 ] do

for j in l i n k t r i g i d x [ i ] do

i f ( k i l l e d r ow s [ j ]=1) then

780 countk [ i ] := countk [ i ]+1;

f i ;

od ;

od ;

785 i f (1 in countk ) then

#should never happen

Pr int ( ” getNextLink : e r r o r ! no l i nked v e r t i c e s , ” ,

”but v e r t i c e s which could be used .\n” ) ;

Pr int ( ” countk : ” , countk , ”\n” ) ;

790 f i ;

f i ;

#save a l l p o s s i b i l i t i e s o f paths ( each a s s o c i a t ed

poss2 : = [ ] ;

795 for cur in poss do

l i d x :=1;

cur2 := k i l l T r i a n g l e s L i n k ( cur [ 1 ] , cur [ 2 ] , l i d x ) ;

169



Appendix D. Enumeration algorithm for the 24-cell

while ( cur2 <>[]) do

numk:=0;

800 #fo r a l l k i l l e d t r i a n g l e s

for t in cur2 [ 1 ] do

#check i f t r i a n g l e e x i s t s

t idx := Pos i t i on ( t r i g , t ) ;

i f ( t idx=f a i l ) then

805 #should never happen

Pr int ( ” getNextLink : e r r o r ! t r i a n g l e ” , t , ” not found !\n\n” ) ;

f i ;

#check i f t r i a n g l e d has a l r eady been k i l l e d

i f ( k i l l e d r ow s [ t idx ]=0) then numk:=numk+1; f i ;

810 od ;

#i f the re where non� k i l l e d t r i a n g l e s , add them to poss2

i f (numk>0) then

AddSet ( poss2 , [ cur [ 1 ] , cur2 [ 1 ] , cur2 [ 2 ] ] ) ;

815 f i ;

l i d x := l i d x +1;

cur2 := k i l l T r i a n g l e s L i n k ( cur [ 1 ] , cur [ 2 ] , l i d x ) ;

od ;

od ;

820

#Size ( poss2 ) = number o f p o s s i l i t i e s

#idx too big

i f ( idx>Length ( poss2 ) ) then

825 r e turn [ ] ;

f i ;

#4 t r i a n g l e s and a ver tex

re turn poss2 [ idx ] ;

830 end ;

### constructComplexBacktrack ##################################################

# main backtrack ing a lgor i thm � con s t ru c t s a l l p o s s i b l e subcomplexes o f the

835 # se t o f t r i a n g l e s o f the 24� c e l l f u l f i l l i n g the pseudomanifold property and

# having in the l i n k o f each ver tex e i t h e r a hami l tonian path or a s p l i t path

#

# l v l = backtrack � l e v e l

# curv = cur rent ver tex

840 # idx = idx�th p o s s i b i l i t y to choose

#

constructComplexBacktrack := func t i on ( l v l , curv , idx )

l o c a l i , c a l l i d x , pseudo , f a i l e d , t , t idx , wask i l l ed , wasf ixed , nextL ;

845 Print ( ” backtrack : l v l=” , l v l , ” idx=” , idx , ” curv=” , curv , ”\n” ) ;
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#get f i r s t cand idate s f o r t r i a n g l e s to be k i l l e d

#nextL [1 ]= next ver tex

#nextL [2 ]= t r i a n g l e s to k i l l

850 #nextL [3 ]= t r i a n g l e s to f i x

nextL :=getNextLink ( curv , idx ) ;

Pr int ( ” backtrack : curv=” , curv , ” nex t l=” , nextL , ”\n” ) ;

855 i f ( nextL =[ ] ) then

#no more p o s s i b i l i t i e s , s t ep back

Pr int ( ” backtrack : no more p o s s i b i l i t i e s , t e rminat ing branch .\n\n” ) ;

r e turn �1;

f i ;

860

#k i l l t r i a n g l e s

wa sk i l l e d : = [ ] ;

was f ixed : = [ ] ;

for t in nextL [ 2 ] do

865 t idx := Pos i t i on ( t r i g , t ) ;

i f ( t idx=f a i l ) then

#should never happen

Pr int ( ” backtrack : e r r o r ! couldn ’ t f i nd t r i a n g l e ” ,

t , ” in t r i a n gu l a t i o n !\n” ) ;

870 r e turn �1;

f i ;

i f ( k i l l e d r ow s [ t idx ]=0) then

Add( wask i l l ed , t idx ) ;

875 k i l l e d r ows [ t idx ] :=1 ;

for i in [ 1 . . Length ( numedget ) ] do

numedget [ i ] := numedget [ i ]�mat [ t idx ] [ i ] ;

od ;

f i ;

880 od ;

for t in nextL [ 3 ] do

t idx := Pos i t i on ( t r i g , t ) ;

i f ( t idx=f a i l ) then

885 #should never happen

Pr int ( ” backtrack : e r r o r ! couldn ’ t f i nd t r i a n g l e ” ,

t , ” in t r i a n gu l a t i o n !\n” ) ;

r e turn �1;

f i ;

890 k i l l e d r ows [ t idx ] :=2 ;

AddSet ( wasf ixed , t idx ) ;

od ;
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Print ( ” backtrack : k i l l e d ” , Length ( wa sk i l l e d ) ,

895 ” t r i a n g l e s in lk ( ” , nextL [ 1 ] , ” )\n” ) ;

numki l led :=numki l led+Length ( wa sk i l l e d ) ;

pseudo :=1;

f a i l e d :=0;

900 for i in [ 1 . . Length ( numedget ) ] do

i f ( numedget [ i ]<2) then f a i l e d :=1; break ; f i ;

i f ( numedget [ i ]<>2) then pseudo :=0; f i ;

od ;

905 i f ( f a i l e d =0) then

Print ( ” backtrack : v a l i d t r i angu l a t i on , r e cu r s i n g .\n\n” ) ;

i f ( pseudo=0) then

i f ( numkil led <32) then

c a l l i d x :=1;

910 while ( constructComplexBacktrack ( l v l +1,nextL [ 1 ] , c a l l i d x )>=0) do

c a l l i d x := c a l l i d x +1;

od ;

f i ;

else

915 #examine case

Pr int ( ”\nbacktrack : found pseudomanifold f o r numki l led=” ,

numkil led , ”\n\n” ) ;

i f ( numki l led=32) then s av e su r f ( ) ; f i ;

f i ;

920 else

Print ( ” backtrack : l v l=” , l v l , ” idx=” , idx ,

” � i n v a l i d t r i angu l a t i on , s t epp ing back .\n” ) ;

f i ;

925 #unk i l l t r i a n g l e s

numki l led :=numkil led �Length ( wa sk i l l e d ) ;

for t idx in wask i l l e d do

k i l l e d r ows [ t idx ] :=0 ;

for i in [ 1 . . Length ( numedget ) ] do

930 numedget [ i ] := numedget [ i ]+mat [ t idx ] [ i ] ;

od ;

od ;

#unf ix t r i a n g l e s

935 for t idx in wasf ixed do

k i l l e d r ows [ t idx ] :=0 ;

od ;

Pr int ( ” backtrack : l v l=” , l v l , ” idx=” , idx ,

940 ” � branch done , rebranch one up .\n\n” ) ;
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r e turn 0 ;

end ;

945

################################################################################

################################################################################

#### MAIN PROGRAM ####

################################################################################

950 ################################################################################

#compute the l i n k s o f a l l t r i a n g l e s

t op l i nk :=computeLinks ( t r i g ) ;

for i in [ 1 . . Length ( t op l i nk ) ] do

955 l i n k t r i g [ i ] : = [ ] ;

l i n k t r i g i d x [ i ] : = [ ] ;

for e in t op l i nk [ i ] do

t :=Union ( Set ( e ) , [ i ] ) ;

AddSet ( l i n k t r i g [ i ] , t ) ;

960 AddSet ( l i n k t r i g i d x [ i ] , Po s i t i on ( t r i g , t ) ) ;

od ;

od ;

965 #two po s s i b l e s t a r t i n g c on f i g u r a t i o n s in the l i n k o f ver tex 1

#note that the l a b e l i n g in the f i r s t l i n k can be f r e e l y chosen

s t a r t c o n f i g s :=[

[ #hamilton path [ 2 , 3 , 6 , 1 1 , 7 , 5 , 9 , 4 ]

#k i l l e d t r i a n g l e s ( not in complex )

970 [ [ 1 , 2 , 5 ] , [ 1 , 3 , 7 ] , [ 1 , 4 , 6 ] , [ 1 , 9 , 11 ] ] ,

#f i x ed t r i a n g l e s ( in complex )

[ [ 1 , 2 , 3 ] , [ 1 , 2 , 4 ] , [ 1 , 3 , 6 ] , [ 1 , 4 , 9 ] , [ 1 , 5 , 7 ] , [ 1 , 5 , 9 ] ,

[ 1 , 6 , 11 ] , [ 1 , 7 , 11 ] ]

] ,

975 [ #s p l i t path , two c y c l e s [ 2 , 3 , 6 , 4 ] and [ 5 , 7 , 1 1 , 9 ]

#k i l l e d t r i a n g l e s ( not in complex )

[ [ 1 , 2 , 5 ] , [ 1 , 3 , 7 ] , [ 1 , 4 , 9 ] , [ 1 , 6 , 11 ] ] ,

#f i x ed t r i a n g l e s ( in complex )

[ [ 1 , 2 , 3 ] , [ 1 , 2 , 4 ] , [ 1 , 3 , 6 ] , [ 1 , 4 , 6 ] , [ 1 , 5 , 7 ] , [ 1 , 5 , 9 ] ,

980 [ 1 , 7 , 11 ] , [ 1 , 9 , 11 ] ]

]

] ;

for s t a r t c a s e in [ 1 . . Length ( s t a r t c o n f i g s ) ] do

985 s t a r t c a s e a r r := s t a r t c o n f i g s [ s t a r t c a s e ] ;

Pr int ( ”��> s t a t i n g c a l c u l a t i o n f o r case ” ,

s t a r t c a s e , ” ( ” , s t a r t c a s e a r r , ” ) in lk ( 1 ) . \ n\n” ) ;

#c a l c u l a t e i n c i d enc e matrix
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990 #matrix [ i ] [ j ] = 1 i f f edges [ j ] edge o f t r i g [ i ]

#e l s e matrix [ i ] [ j ] = 0

#numedget [ i ]=number o f t r i a n g l e s that conta in edge [ i ]

numedget:= L i s tWi th Id en t i c a lEn t r i e s ( Length ( edges ) , 0 ) ;

995

#setup matrix

mat : = [ ] ;

for t idx in [ 1 . . Length ( t r i g ) ] do

mat [ t idx ] : = [ ] ;

1000 for e idx in [ 1 . . Length ( edges ) ] do

i f ( I sSubse t ( t r i g [ t idx ] , edges [ e idx ] ) ) then

mat [ t idx ] [ e idx ] :=1 ;

numedget [ e idx ] := numedget [ e idx ]+1;

else

1005 mat [ t idx ] [ e idx ] :=0 ;

f i ;

od ;

od ;

1010 #number o f k i l l e d t r i a n g l e s

numki l led :=0;

#k i l l e d r ow s [ i ]=1 when t r i a n g l e i was k i l l e d , 0 otherwi se

k i l l e d r ows := L i s tWi th Id en t i c a lEn t r i e s ( Length ( t r i g ) , 0 ) ;

1015

#se t s o f k i l l e d ( not part o f complex ) and f i x ed ( part o f complex ) t r i a n g l e s

k i l l e d := s t a r t c a s e a r r [ 1 ] ;

f i x e d := s t a r t c a s e a r r [ 2 ] ;

1020 #update k i l l e d r ow s and numedget f o r k i l l e d t r i a n g l e s

for t in k i l l e d do

t idx := Pos i t i on ( t r i g , t ) ;

i f ( k i l l e d r ow s [ t idx ]=0) then

k i l l e d r ows [ t idx ] :=1 ;

1025 for i in [ 1 . . Length ( numedget ) ] do

numedget [ i ] := numedget [ i ]�mat [ t idx ] [ i ] ;

od ;

f i ;

od ;

1030 numki l led :=4;

#update k i l l e d r ow s f o r f i x ed t r i a n g l e s

for t in f i x e d do

k i l l e d r ows [ Pos i t i on ( t r i g , t ) ] := 2 ;

1035 od ;

#s t a r t backtrack ing a lgor i thm with cur rent s t a r t i n g c on f i gu r a t i on in lk (1 )
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scurpos :=1;

r e t :=0;

1040 while ( ret>=0) do #ret>=0 means at l e a s t one more branch l e f t

Pr int ( ”����> s t a r t i n g f o r ver tex 1 , idx ” , scurpos , ” .\n\n” ) ;

r e t :=constructComplexBacktrack (1 , 1 , scurpos ) ;

scurpos := scurpos +1;

Pr int ( ”����> s topping f o r ver tex 1 , idx ” , scurpos , ” .\n\n” ) ;

1045 od ;

Pr int ( ”���> no more p o s s i b i l i t i e s f o r case ” , s t a r t c a s e , ” .\n\n” ) ;

od ;

1050 Print ( ”��> no more p o s s i b i l i t i e s , a l l done . found ” ,

numsurfs , ” pseudo s u r f a c e s .\n” ) ;

LogTo ( ) ;

1055 ################################################################################

################################################################################

### END ###

################################################################################

################################################################################
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Appendix E

GAP program constructing a conjectured

series of Sk � Sk

The following GAP script is also available in digital form on the author’s website

[41] and upon request.

1 ################################################################################

################################################################################

#### s e r i e s s k s k . gap ####

################################################################################

5 ################################################################################

#### Author : Fe l i x Ef f enberger , 2009 ####

#### ####

#### Desc r ip t i on : ####

#### ������������ ####

10 #### Constructs a s e r i e s o f t r i a n gu l a t i o n s Mˆ{2(k�1)} which are con j e c tured ####

#### to be (k�1)�Hamiltonian in the 2k� c r o s s po lytope and o f the t o p o l o g i c a l####

#### type Mˆ2(k�1)˜=Sˆ{k�1} x Sˆ{k�1} . ####

#### ####

#### See Chapter 5 o f F . Ef f enberger , Hamiltonian submani fo lds o f r e gu l a r ####

15 #### polytopes , 2010 , PhD the s i s , Un ive r s i ty o f S tu t tga r t f o r f u r t h e r de� ####

#### t a i l s . ####

#### ####

#### This s c r i p t needs the GAP package ‘ simpcomp ’ to run , which can be ob� ####

#### ta ined at ####

20 #### ####

#### http ://www. gap�system . org /Packages /simpcomp . html ####

#### or ####

#### http ://www. i g t . uni� s t u t t g a r t . de/ Ls tD i f f g eo /simpcomp/ ####

#### ####

25 #### Usage : ####

177



Appendix E. GAP program constructing a conjectured series of Sk � Sk

#### ������ ####

#### Adjust the parameter ‘kmax ’ in the g l oba l v a r i a b l e s s e c t i o n below and ####

#### execute the s c r i p t . The output w i l l be wr i t t en to the s c r e en and the ####

#### log f i l e ‘ s e r i e s s k s k . log ’ . I f the f l a g ‘ w r i t e f i l e s ’ in the g l oba l va� ####

30 #### r i a b l e s s e c t i o n i s s e t to true , the complexes are wr i t t en to the f i l e s ####

#### ‘SKSK {k } . sc ’ , where {k} i s the index in the s e r i e s . ####

#### ####

################################################################################

#### ####

35 #### Tested with GAP Vers ion 4 . 4 . 9 , simpcomp Vers ion 1 . 1 . 2 1 ####

#### ####

################################################################################

################################################################################

40 LogTo( ” s e r i e s s k s k . l og ” ) ;

################################################################################

################################################################################

#### GLOBAL VARIABLES ####

45 ################################################################################

################################################################################

kmax:=5; #maximal index to which the s e r i e s should be cons t ruc ted

w r i t e f i l e s := fa l se ; #f l a g to s e t whether output f i l e s with the t r i a n gu l a t i o n s

50 #in simpcomp format (SKSK {k } . s c ) should be wr i t t en

################################################################################

################################################################################

#### MAIN PROGRAM ####

55 ################################################################################

################################################################################

#s t a r t with nncs 8 ver tex t r i a n gu l a t i o n o f the to rus

complex :=SCFromDifferenceCycles ( [ [ 1 , 1 , 6 ] , [ 3 , 3 , 2 ] ] ) ;

60

for k in [ 3 . . kmax ] do

Print ( ”## Construct ing case k=” ,k�1 , ” �> k=” ,k , ” ##\n” ) ;

65 #number o f v e r t i c e s , l ab e l ed in Z/4kZ

n:=4*k ;

#autormorphism group

cyc :=PermList ( Concatenation ( [ 2 . . n ] , [ 1 ] ) ) ; #c y c l i c generato r

70 mula:=PermList ( ( ( [ 0 . . n�1]* �1) mod n)+1); #mult . *(�1)

mulb:=PermList ( ( ( [ 0 . . n�1 ]* (2*k�1)) mod n)+1); #mult . *(2k�1)

G:=Group ( cyc , mula , mulb ) ;
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#pr in t automorphism group in fo rmat ion

75 Print ( ”Automorphism group G:\n |G|=” , S i z e (G) ,

”\nG˜=” , S t ruc tu r eDe s c r i p t i on (G) , ”\n” ) ;

Pr int ( ”Generators :\n” , cyc , ”\n” ,mula , ”\n” ,mulb , ”\n\n” ) ;

#map l i n k from Z/4kZ to Z/4(k+1)Z

80 mapfacets : = [ ] ;

for f in complex . Link ( 1 ) . Facets do

mf:=ShallowCopy ( f ) �1;

for i in [ 1 . . Length (mf ) ] do

i f (mf [ i ]<2*(k�1)) then

85 # v mod 4*(k�1) �> v+1 mod 4*k

mf [ i ] :=mf [ i ]+1;

e l i f (mf [ i ]>2*(k�1)) then

# �v mod 4*(k�1) �> �v�1 mod 4*k

mf [ i ] :=mf [ i ]+3;

90 f i ;

od ;

#g lue in s implex [ �1 ,0 , 1 ]

Add( mapfacets , Union (mf+1 , [1 ,2 ,4*k ] ) ) ;

95 od ;

#generate complex from group opera t ion

complex :=SCFromFacets (Union ( Orbits (G, Set ( mapfacets ) , OnSets ) ) ) ;

SCFaceLattice ( complex ) ; #speed up f �vec to r c a l c u l a t i o n

100 SCPropertySet ( complex , ”AutomorphismGroup” ,G) ;

#pr in t complex in fo rmat ion

Pr int ( ”Complex :\ nd=” , complex .Dim,

”\nF=” , complex .F ,

105 ”\nChi=” , complex . Chi ,

”\nHomology H *=” , complex . Homology ,

”\nGenerators :\n” , complex . Generators ,

”\nGenerating d i f f e r e n c e c y c l e s :\n” ,

Set ( L i s t ( complex . Generators , x�>SCDifferenceCycleCompress ( x [ 1 ] , n ) ) ) ,

110 ”\nAll d i f f e r e n c e c y c l e s :\n” ,

Set ( L i s t ( complex . Facets , x�>SCDifferenceCycleCompress (x , n ) ) ) ,

”\n\n” ) ;

#wr i t e f i l e s to d i s c

115 i f ( w r i t e f i l e s=true ) then

SCSave ( complex , Concatenation ( ”SKSK ” , S t r ing (k ) , ” . sc ” ) ) ;

f i ;

od ;

120 LogTo ( ) ;
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################################################################################

################################################################################

### END ###

125 ################################################################################

################################################################################
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